Neuroblastoma is a pediatric cancer arising from sympathetic nervous system. Remarkable heterogeneity in outcomes is one of its widely known features. One of the traits strongly associated with the unfavorable subtype is the amplification of oncogene MYCN. Here, we performed cross-platform biomarker detection by comparing gene expression and pathway activation patterns from the two literature reports and from our experimental dataset, combining profiles for the 761 neuroblastoma patients with known MYCN amplification status. We identified 109 / 25 gene expression / pathway activation biomarkers strongly linked with the MYCN amplification. The marker genes/pathways are involved in the processes of purine nucleotide biosynthesis, ATP-binding, tetrahydrofolate metabolism, building mitochondrial matrix, biosynthesis of amino acids, tRNA aminoacylation and NADP-linked oxidation-reduction processes, as well as in the tyrosine phosphatase activity, p53 signaling, cell cycle progression and the G1/S and G2/M checkpoints. To connect molecular functions of the genes involved in MYCN-amplified phenotype, we built a new molecular pathway using known intracellular protein interaction networks. The activation of this pathway was highly selective in discriminating MYCN-amplified neuroblastomas in all three datasets. Our data also suggest that the phosphoinositide 3-kinase (PI3K) inhibitors may provide new opportunities for the treatment of the MYCN-amplified neuroblastoma subtype.
Porphyrin-fulleren-based nanoparticles (NP), containing magnetic isotopes 25 Mg, 67 Zn and zinc of natural isotope composition (Zn total -NP), have been tested on leukemic cells of patients with T-ALL, B-ALL, AML and lymphocytes of healthy donors. Reliable differences in action of magnetic and non-magnetic zinc isotopes for some types of cells were obtained. Magnetic magnesium isotopes and pure nanoparticles of porphyrinfulleren did not demonstrate any effects.67 Zn-NP induced high cytotoxicity in cells of acute B-lymphoblastic leukemia with LD 50 almost three times lower, than those for healthy donors, and 4 times lower in comparison with Zn total -NP. Also evaluation of apoptosis process in granulocytes of healthy donors in the case of the preparates were performed by method of flow cytometry.
It is known that in COVID-19, hypercoagulation and sometimes thrombocytopenia are related to disease severity. There is also controversial data on platelet participation in COVID-19 pathology. We aimed to determine the degree of platelet hyperactivation in COVID-19 patients. Whole blood flow cytometry with Annexin-V and lactadherin staining ("PS+ platelets") was utilized. Additionally, a stochastic mathematical model of platelet production and consumption was developed. Here we demonstrated that the percentage of PS+ platelets in COVID-19 patients was twofold that of healthy donors. There was a significant correlation between the amount of PS+ platelets and the percentage of lung damage in patients. No connection was found between platelet senescence and hospital therapy or patients' chronic diseases, except for chronic lung disease. Although no thrombocytopenia was observed in patients, the observed increase in platelet size (FSC-A parameter in flow cytometry) could indicate that platelet age is decreased in patients. The developed computational model of platelet turnover confirms the possibility of intense platelet consumption without noticeable changes in platelet count. We conclude that the observed platelet hyperactivation in COVID-19 could be caused by platelet activation in circulation, leading to platelet consumption without significant thrombocytopenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.