A new crossover technique for genetic algorithms is proposed in this paper. The technique is called probabilistic adaptive crossover and denoted by PAX. The method includes the estimation of the probability distribution of the population, in order to store in a unique probability vector P information about the best and the worse solutions of the problem to be solved. The proposed methodology is compared with six crossover techniques namely: one-point crossover, two-point crossover, SANUX, discrete crossover, uniform crossover and selective crossover. These methodologies were simulated and compared over five test problems described by ONEMAX Function, Royal Road Function, Random L-MaxSAT, Bohachevsky Function, and the Himmelblau Function.
Recently, a new crossover technique for genetic algorithms has been proposed. The technique, called probabilistic adaptive crossover (PAX), includes the estimation of the probability distribution of the population, storing the information regarding the best and the worst solutions of the problem being solved in a probability vector. The use of the proposed technique to face Chilean wine classification based on chromatograms obtained from an HPLC is reported in this paper. PAX is used in the first stage as the feature selection method and then support vector machines (SVM) and linear discriminant analysis (LDA) are used as classifiers. The results are compared with those obtained using the uniform (discrete) crossover standard technique and a variant of PAX called mixed crossover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.