The purpose of this study is to assess the accuracy of day-to-day predictions of liver tumour position using implanted gold markers as surrogates and to compare the method with alternative set-up strategies, i.e. no correction, vertebrae and 3D diaphragm-based set-up. Twenty patients undergoing stereotactic body radiation therapy (SBRT) with abdominal compression for primary or metastatic liver cancer were analysed. We determined the day-to-day correlation between gold marker and tumour positions in contrast-enhanced CT scans acquired at treatment preparation and before each treatment session. The influence of marker-tumour distance on the accuracy of prediction was estimated by introducing a method extension of the set-up error paradigm. The distance between gold markers and the centre of the tumour varied between 5 and 96 mm. Marker-guidance was superior to guiding treatment using other surrogates, although both the random and systematic components of the prediction error SD depended on the tumour-marker distance. For a marker-tumour distance of 4 cm, we observed σ = 1.3 mm and Σ = 1.6 mm. The 3D position of the diaphragm dome was the second best predictor. In conclusion, the tumour position can be predicted accurately using implanted markers, but marker-guided set-up accuracy decreases with increasing distance between implanted markers and the tumour.
Reproducible patient positioning is important in radiotherapy (RT) of head-and-neck cancer. We therefore compared setup errors in head-and-neck RT resulting from three different patient positioning systems. Patients were either treated with a standard head support (SHS) and conventional treatment couch (SHS-3, n = 10), a SHS and rotational couch (SHS-6, n = 10), or an individual head support (IHS) and rotational couch (IHS-6, n = 10). Interfraction mean translation vector lenghts were significantly lower for IHS-6 compared to SHS-3 (0.8 ± 0.3 mm vs. 1.4 ± 0.7 mm, P = 0.001). Intrafraction displacement was comparable among cohorts. This study showed that the use of a six degrees of freedom couch combined with an IHS in head-and-neck RT resulted in better interfraction reproducibility.
BACKGROUND: There is a demand for interiors to support other activities in a car than controlling the vehicle. Currently, this is the case for the car passengers and-in the future-autonomous driving cars will also facilitate drivers to perform other activities. One of these activities is working with handheld devices. OBJECTIVE: Previous research shows that people experience problems when using handheld devices in a moving vehicle and the use of handheld devices generally causes unwanted neck flexion [Young et al. 2012; Sin and Zu 2011; Gold et al. 2011]. In this study, armrests are designed to support the arms when using handheld devices in a driving car in order to decrease neck flexion. METHODS: Neck flexion was measured by attaching markers on the C7 and tragus. Discomfort was indicated on a body map on a scale 1-10. User experience was evaluated in a semi-structured interview. RESULTS: Neck flexion is significantly decreased by the support of the armrests and approaches a neutral position. Furthermore, overall comfort and comfort in the neck region specifically are significantly increased. Subjects appreciate the body posture facilitated by the armrests and 9 out of 10 prefer using handheld devices with the armrests compared to using handheld devices without the armrests. CONLUSION: More efforts are needed to develop the mock-up into an established product, but the angles and dimensions presented in this study could serve as guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.