We give a formal specification for a strategic network routing problem known as the convoy movement problem (CMP) and establish that the corresponding feasibility problem is NP-complete. We then introduce an integer programming (IP) model based on the concept of a time-space network and apply a Lagrangian relaxation to this model. We discuss how the dual function may be evaluated using a modified version of Dijkstra’s algorithm suitable to very large, implicitly defined graphs and show how heuristic solutions to the primal problem may be obtained. We present results for a number of instances of the CMP, most of which are based on real-world problems. The number of convoys in these instances varies between 15–25, and their movement time requires up to several thousand time units in networks ranging in size from a few dozen to several thousand vertices and edges. The most difficult instance tested involves 17 long convoys each taking four times the average link travel time to pass through a point in the network. This instance is solved within 3.3% of optimality in less than 3.5 hours of computing time on a Dell Precision 420 dual processor computer. Every other test instance is solved within 2% of the optimal value in less than 20 minutes of computing time
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.