<div class="section abstract"><div class="htmlview paragraph">The purpose of the Los Alamos High-Energy Neutron Testing Handbook is to provide user information and guidelines for testing Integrated Circuits (IC) and electronic systems at the Irradiation of Chips and Electronics (ICE) Houses at the Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory (LANL). Microelectronic technology is constantly advancing to higher density, faster devices and lower voltages. These factors may increase device susceptibility to radiation effects. The high-energy neutron source at LANSCE/LANL provides the capability for accelerated neutron testing of semiconductor devices and electronic systems and to simulate effects in various neutron environments.</div></div>
The characteristics of a Lead Slowing-Down Spectrometer (LSDS) installed at the Los Alamos Neutron Science Center (LANSCE) are presented in this paper. This instrument is designed to study neutron-induced fission on ultra small quantities of actinides, on the order of tens of nanograms or less. The measurements of the energy-time relation, energy resolution and neutron flux are compared to simulations performed with MCNPX. Results on neutroninduced fission of 235 U and 239 Pu with tens of micrograms and tens of nanograms, respectively, are presented. Finally, a digital filter designed to improve the detection of fission events at short time after the proton pulses is described.
Fast and heavy inorganic scintillators with suitable radiation tolerance are required to face the challenges presented at future hadron colliders of high energy and intensity. Up to 5 GGy and 5 × 1018 neq/cm2 of one-MeV-equivalent neutron fluence is expected by the forward calorimeter at the Future Hadron Circular Collider. This paper reports the results of an investigation of proton- and neutron-induced radiation damage in various fast and heavy inorganic scintillators, such as LYSO:Ce crystals, LuAG:Ce ceramics, and BaF2 crystals. The experiments were carried out at the Blue Room with 800 MeV proton fluence up to 3.0 × 1015 p/cm2 and at the East Port with one MeV equivalent neutron fluence up to 9.2 × 1015 neq/cm2, respectively, at the Los Alamos Neutron Science Center. Experiments were also carried out at the CERN PS-IRRAD proton facility with 24 GeV proton fluence up to 8.2 × 1015 p/cm2. Research and development will continue to develop LuAG:Ce ceramics and BaF2:Y crystals with improved optical quality, F/T ratio, and radiation hardness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.