Coccidosis is one of the most commonly prevalent and economically important parasitic diseases of poultry worldwide. Chicken coccidia are protozoan parasites of the genus Eimeria. This study aimed at analysing the molecular prevalence of seven species of Eimeria infecting chickens in Tamil Nadu, India. Tissue samples (caecum, rectum and upper and mid intestines) collected from chickens exhibiting symptoms of coccidiosis were used for DNA extraction, followed by amplification of the internal transcribed spacer (ITS) region of Eimeria genome with genus-specific primers and speciation in nested polymerase chain reaction (PCR) with species-specific primers. Of 43 tissue samples examined, 25 were positive in ITS PCR and all the seven species could be identified. However, the prevalence of each species varied. In broilers, Eimeria necatrix was present in all infected chickens with Eimeria brunetti, Eimeria tenella, Eimeria maxima and Eimeria acervulina present in more than 50% of infected chickens, while Eimeria praecox and Eimeria mitis were only present in 11% to 16%. Although only 7 samples were positive among layers, the prevalence was largely similar, but with a higher prevalence of E. praecox and E. mitis and a lower prevalence of E. tenella. Multiple infections were most common, with 2-6 Eimeria species infecting the same chickens. In order to estimate the preponderance of each infecting species of Eimeria, a random cloning technique was adopted. The genus-specific ITS PCR product was cloned in a TA vector and ten clones were randomly picked and used as template for amplification of all the seven genera of Eimeria. If the specific species of Eimeria is preponderant, then the frequency of the clones showing that species-specific PCR amplification would be higher. Using this method, the most preponderant species present in the rectum, mid and upper intestines of layers was assessed to be E. acervulina, E. brunetti and E. necatrix. E. acervulina was present in 60-90%, E. necatrix in 10-30% and E. brunetti in 10-20% of the clones screened, indicating that these species could be the most preponderant Eimeria species. Intervention strategies should aim at these species. This new method of estimating preponderance of infecting Eimeria species could be used to assess the relative importance of each species at the farm or region level instead of relying only on prevalence estimates.
As a first attempt to generate sequence information from the protein-coding genes of the genomically unknown parasite, Eimeria brunetti, a cDNA library was generated from purified sporozoites in the λTriplEx2™ vector. Analysis of 283 expressed sequence tags (ESTs) from the cDNA library constructed revealed 12 contigs (26 ESTs) and 257 singletons. BLASTx analysis revealed that 50 transcripts had significant matches to known proteins, whereas the remaining 233 had no significant matches, probably representing novel genes. Based on Gene Ontology classification, the transcripts were categorized as biological process (46 ESTs), molecular function (37 ESTs), and cellular component (19 ESTs). The transcripts analyzed show maximum homology to the apicomplexan parasite Toxoplasma gondii. Despite the small number of transcripts, this is the first transcriptome analysis of E. brunetti and provides preliminary data that will increase understanding of parasite biological function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.