A kinetic theory is used to investigate the theory of a free-electron laser with a helical wiggler and an ion channel based on the Einstein coefficient method. The laser gain in the low-gain regime is obtained for the case of a cold tenuous relativistic electron beam, where the beam plasma frequency is much less than the radiation frequency, propagating in this configuration. The resulting gain equation is analyzed numerically over a wide range of system parameters.
A theoretical study of electron trajectories and gain in a free electron laser (FEL) with an electromagnetic-wave wiggler and ion-channel guiding is presented based on the Einstein coefficient method. The laser gain in the low-gain regime is obtained for the case of a cold tenuous relativistic electron beam, where the beam plasma frequency is much less than the radiation frequency propagating in this configuration. The resulting gain equation is analyzed numerically over a wide range of system parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.