Density-based clustering is one of the most important sciences nowadays. A various number of datasets depend on it. Since homogeneous clustering may generate a large number of smaller useless clusters, a good clustering method should give the permission to a significant density variation. This paper focuses on enhancing the clustering results after using densitybased cluster algorithms DBSCAN (Density-based spatial clustering of applications with noise) or OPTICS (Ordering points to identify the clustering structure) by using statistical models. The use of statistical models supports improving results by reducing the number of noise points with the same cluster number and expand the selected area as recognized as cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.