The thermal decomposition and hydrogen etching of a 6H-SiC(0001) Si-face were directly monitored using an in situ gravimetric monitoring system. The monitoring of the weight change of the 6H-SiC Si-face using this system clarified the dependences of the thermal decomposition and hydrogen etching rates on the substrate temperature. Although the thermal decomposition of the 6H-SiC Si-face above 1400 C generated a graphite layer since only the Si atom directly desorbs from the surface, the etching of the 6H-SiC Si-face by hydrogen did not form this layer, and both Si and C atoms react with hydrogen. Moreover, the surface reaction of the 6H-SiC Si face with H 2 and the resultant surface morphology were found to change at approximately 1250 C. #
Pd / Mg 3.3 Ni films were prepared by dc sputtering deposition on three different substrates of glass, diamondlike carbon/Si, and Si. Hydrogenation and dehydrogenation cycles were performed on these samples simultaneously. The optical switching property due to the hydrogenation and dehydrogenation was monitored by the transmission of laser light via the glass substrate. The switching ability was totally lost after 120 cycles. We made comparative study of the composition change between the new (as-deposited) and old (after 120 switching cycles) samples by Rutherford backscattering (RBS), elastic recoil detection analysis (ERDA), and nuclear reaction analysis (NRA). From the RBS results we found out the segregation of a Mg layer between the Pd cap layer and the rest of the Mg–Ni layer. At the Pd/Mg interface in the old sample, thin MgO layer formed probably during the dehydrogenation process with O2. ERDA showed that there is much hydrogen in the old sample. NRA displayed the depth profiles of hydrogen distribution in the old sample. It is revealed that much hydrogen is accumulated at the interface between the Pd cap layer and the segregated Mg layer. It can be concluded that the formations of oxide and hydride of the segregated Mg layer are the main reasons for the degradation of the Mg3.3Ni switchable mirror.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.