During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability was also seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST-1 shows a highly significant correlation between flux and polarization, with P increasing from ∼ 20% at minimum to > 40% at maximum, while the orientation of its electric vector stayed constant. HST-1's optical-UV spectrum is very hard (α UV −O ∼ 0.5, F ν ∝ ν −α ), and displays "hard lags" during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2σ upper limits of 0.5δ parsecs and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet PA, makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P ) plane. The nucleus has a much steeper spectrum (α UV −O ∼ 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.
We present a multi-wavelength polarimetric and spectral study of M87 jet obtained at sub-arcsecond resolution between 2002 and 2008. The observations include multi-band archival VLA polarimetry data sets along with the HST imaging polarimetry. These observations have better angular resolution than previous work by factors of 2-3 and in addition, allow us to explore the time domain. These observations envelope the huge flare in HST-1 located at 0. 86 from the nucleus (Cheung et al. 2007;Harris et al. 2009;Madrid 2009;Perlman et al. 2011). The increased resolution enables us to view more structure in each knot, showing several resolved sub-components. We also see apparent helical structure in the polarization vectors in several knots, with polarization vectors turning either clockwise or counterclockwise near the flux maxima in various places as well as show filamentary undulations. Some of these characteristics are correlated with flux and polarization maxima while others are not. We also examine the total flux and fractional polarization and look for changes in both radio and optical since the observations of Perlman et al. (1999) and test them against various models based on shocks and instabilities in the jet. Our results are broadly consistent with previous spine-sheath models and recollimation shock models, however, they require additional combinations of features to explain the observed complexity, e.g. shearing of magnetic field lines near the jet surface and compression of the toroidal component near shocks. In particular, in many regions we find apparently helical features both in total flux and polarization. We discuss the physical interpretation of these features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.