The properties of ferroelectric films are known to degrade when subjected to hydrogen in forming gas anneals. Earlier studies have attributed this degradation to the loss of oxygen from these films during these anneals. In this study, we show that though oxygen is lost during forming gas annealing, hydrogen incorporation is the primary mechanism for the degradation of ferroelectric properties. Raman spectra obtained from the forming gas-annealed films show evidence of polar hydroxil [OH−] bonds in the films. The most probable site for hydrogen ions is discussed based on ionic radii, crystal structure, electrical properties, and Raman spectra. We propose that the hydrogen ion is bonded with one of the apical oxygen ions and prevents the Ti ion from switching. Pyroelectric measurements on forming gas-annealed capacitors confirm that the capacitors no longer possess spontaneous polarization.
A fundamental issue in ferroic systems (ferromagnetic and ferroelectric) is the scaling of the order parameter (magnetization or polarization) with size. Specifically, in ferroelectric thin films, deviations in the polarization can occur due to: (i) competition between thermal vibrations and the correlation energy (which aligns the dipoles); (ii) damage during fabrication. These deviations will have a profound impact on the performance of the next generation of high-density nonvolatile memories based on the spontaneous polarization. We have combined two novel approaches, namely focused ion beam milling to define sub-micron capacitors and scanning force microscopy to examine the scaling of the fundamental ferroelectric response of these capacitors. We find that the capacitors exhibit ferroelectric properties for lateral dimensions down to at least 100nm, suggesting that memories with densities in the range of 4-16 Gbits can be successfully fabricated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.