Suspension seat is used in the off-road condition to attenuate excessive vibration exposed to the human body. The efficiency of a seat reducing vibration not only depends on the dynamic characteristics of the seat, but the dynamic characteristics of human body and the characteristics of the input vibration as well. Tractor drivers adopted different postures during their farm work activities, which may influence the dynamic characteristics of the human body. However, the influenced of the driver’s posture on suspension seat transmissibility has received less systematic attention. Thus, this study is carried out with the objective to investigate the effect of different postures on seat transmissibility when seated on a suspension seat. Three male subjects were exposed to random vibration at 2.0 m/s2 r.m.s with frequency ranging from 1-20 Hz, while seated on a vibration simulator for 60 seconds. The subjects adopted four seating postures: (i) relaxed, (ii) slouched, (iii) tensed and (iv) with backrest support. The study found that relaxed and slouched postures have a resonance frequency at 2.0 Hz. However, as the posture changed to backrest support, the resonance frequency of the seat transmissibility slightly increased by 0.25 Hz. This study suggested that changing the postures caused changes in the dynamics of human body, and thus affected the suspension seat transmissibility. It is concluded that, non-linearity in suspension seat transmissibility is influenced by the changes of body postures.
Exposure to noise and whole-body vibration (WBV) has been a key element in determining comfort levels in transportation systems. In the automotive industry, researchers and engineers continuously work on reducing noise and vibration levels to minimize discomfort. Noise annoyance in vehicles results from structure-borne as well as air-borne noise from vehicle powertrain, tires and aeroacoustics. Whole-body vibration affects vehicle passenger comfort at the seat pan, back rest and feet. The objective of this research is to evaluate the comfort level of seated passengers in a vehicle from noise and whole-body vibration by considering both separate and combined modality. The noise and vibration data were recorded and analysed in two vehicles on the same highway road with four different speeds. The vibration exposure in vehicle were evaluated based on ISO2631-1:1997. Noise exposure was based on A-weighted sound pressure level. The combined discomfort on noise and vibration were quantified. The vibration results identified clear dominant of z-axis vertical vibration on seat pan, backrest and feet in both vehicles. The discomfort of combined noise and vibration showed that vehicle B caused a higher discomfort level at the high vehicle speed of 90 km/h and 110 km/h. The Relative Discomfort Indicator (RDI) were introduced to compare levels of discomfort from noise and vibration in different vehicles with varying speeds. The result suggests that the RDI value for vehicle A relative to vehicle B is negative at higher vehicle speed which further indicates that at higher speed, vehicle B have a higher discomfort level compared to vehicle A. The RDI value is expected to be useful for automotive Noise, vibration and harshness (NVH) improvement.
Off-road drivers are exposed to a high magnitude of vibration at low frequency (0.5-25Hz), that can cause harm and possibly attribute to musculoskeletal disorder, particularly low-back pain. The suspension seat is commonly used on an off-road condition to isolate the vibration transmitted to the human body. Nevertheless, the suspension seat modelling that incorporates the human body is still scarce. The objective of this study is to develop a mathematical modelling to represent the suspension seat-person for off-road vehicles. This paper presents a three degrees-of-freedom lumped parameter model. A curve-fitting method is used for parameter identification, which includes the constraint variable function (fmincon()) from the optimisation toolbox of MATLAB(R2017a). The model parameters are optimised using experimentally measured of suspension seat transmissibility. It was found that the model provides a reasonable fit to the measured suspension seat transmissibility at the first peak of resonance frequency, around 2-3 Hz. The results of the study suggested that the human body forms a coupled system with the suspension seat and thus affects the overall performance of the suspension system. As a conclusion, the influence of the human body should not be ignored in the modelling, and a three-degrees degree-of-freedom lumped parameter model provides a better prediction of suspension seat transmissibility. This proposed model is recommended to predict vibration transmissibility for off-road suspension seat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.