In Fig. 3 and its inset the vertical scales should be reduced by a factor of 4. This plotting error affects only the figure. All relevant quantities in the text and in the table are correct as published. We regret the oversight.The corrected version of Fig. 3 is reproduced here. This correction does not affect any results or conclusions of the published paper.FIG. 3. Inclusive ÿ ; K spectrum on Si at K 6 2 . The curves are the calculated spectra for the repulsive (solid) and shallow (dashed) -nucleus potentials, fitted to the measured spectrum. A value of the scaling factor and 2 per degree of freedom are shown for each fitting.
The branching ratios of negative pions and protons due to the weak decays of~C and~'B hypernuclei were measured. The negative pionic decay rates (I' -), proton-induced nonmesonic decay rates (I'"), total nonmesonic decay rates (I "), and ratios of the An~nn process to the Ap~pn process (I'"/I' ) were derived from the present measurements combined with previous studies on the mesonic m and total decay rates. The measured Ishows that Pauli blocking is less effective than expected due to pion distortion. We found that I " is nearly equal to unity in units of the free-space A-decay width. The present results also indicate that I " is almost twice that of I . This is in disagreement with calculations based on meson-exchange models in which I " is strongly suppressed.PACS number(s): 21.80.+a, 25.80.Hp
The ⌳ 13 C hypernucleus was studied by measuring ␥ rays in coincidence with the 13 C(K Ϫ , Ϫ ) reaction. ␥ rays from the 1/2 Ϫ and 3/2 Ϫ states, which are the partners of the spin-orbit doublet states with a predominant configuration of ͓ 12 C g.s. (0 ϩ ) p ⌳ ͔, to the ground state were measured. The splitting of the states was found to be ⌬E(1/2 Ϫ Ϫ3/2 Ϫ )ϭϩ152Ϯ54(stat)Ϯ36(syst) keV. This value is 20-30 times smaller than that of single particle states in nuclei around this mass region. The j ⌳ ϭl ⌳ Ϫ1/2͓(p 1/2 ) ⌳ ͔ state appeared higher in energy, as in normal nuclei. The value gives new insight into the Y N interaction. The excitation energies of the 1/2 Ϫ and 3/2 Ϫ states were obtained as 10.982Ϯ0.031(stat)Ϯ0.056(syst) and 10.830Ϯ0.031(stat)Ϯ0.056(syst) MeV, respectively. We also observed ␥ rays from the 3/2 ϩ state, which has a ͓ 12 C(2 ϩ ) s ⌳ ͔ configuration, to the ground state in ⌳ 13 C. The excitation energy of the 3/2 ϩ state was obtained as 4.880Ϯ0.010(stat) Ϯ0.017(syst) MeV. Nuclear ␥ rays with energies of 4.438 and 15.100 MeV had similar yields, which suggests that a quasifree knockout of a ⌳ particle is dominant in highly excited regions.
The experimental data obtained from the reaction of 6 Li projectiles at 2A GeV on a fixed graphite target were analyzed to study the invariant mass distributions of d + π − and t + π − . Indications of a signal in the d + π − and t + π − invariant mass distributions were observed with significances of 5.3 σ and 5.0 σ , respectively, when including the production target, and 3.7 σ and 5.2 σ , respectively, when excluding the target. The estimated mean values of the invariant mass for d + π − and t + π − signal were 2059.3 ± 1.3 ± 1.7 MeV/c 2 and 2993.7 ± 1.3 ± 0.6 MeV/c 2 respectively. The lifetime estimation of the possible bound states yielding to d + π − and t + π − final states were deduced to be as 181 +30 −24 ± 25 ps and 190 +47 −35 ± 36 ps, respectively. Those final states may be interpreted as the two-body and three-body decay modes of a neutral bound state of two neutrons and a hyperon, 3 n.A hypernucleus, a subatomic system with at least one bound hyperon, is studied in order to deduce the information about fundamental hyperon (Y )-nucleon (N) and Y -Y interactions. Hypernuclei have been mainly studied by means of the missing-mass experiments with secondary-meson and primary-electron beams [1] and earlier with emulsion techniques and bubble chambers [2]. In these experiments, a variety of hypernuclei with the lightest hyperon, the hyperon, were produced and identified. However, the isospin of the produced hypernuclei is similar to that of the target nucleus in these experiments, since they are produced by the elementary process of converting one nucleon in the target nucleus into a hyperon.Information on the Λ-N interaction was already inferred from the hypernuclei in the vicinity of the β stability line * c.rappold@gsi.de † t.saito@gsi.de [3][4][5][6]. The nature of the Λ-N interaction for neutron-rich hypernuclei, in which the ΛN -ΣN coupling three-body force may play a role as described theoretically in Refs. [7-11], has not yet been studied in detail since only a few cases were observed, 10 Li [12], 7 He [13], and 6 H [14]. We thus search for other neutron-rich hypernuclei by means of induced reactions of heavy-ion beams.Neutron-and proton-rich hypernuclei can be indeed studied by using projectile fragmentation reactions of heavy-ion beams. In such reactions, a projectile fragment can capture a hyperon produced in the hot participant region to produce a hypernucleus [15][16][17][18][19]. They might also be produced in a multistage process, such as through a Fermi breakup decay of excited heavier hypernuclear spectators, possibly formed in peripheral collisions [19][20][21].We, the HypHI Collaboration, have proposed a series of experiments at the GSI Helmholtz Centre for Heavy Ion Research that would use induced reactions of stable heavy-ion beams and rare-isotope beams to produce 041001-1 0556-2813/2013/88(4)/041001 (6)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.