Abstract:In this study, the application of a calcium-based bifunctional catalyst/sorbent is investigated in modified chemical looping steam methane reforming (CLSMR) process for in situ CO 2 sorption and H 2 production. The yttrium promoted Ca-Co samples were synthesized and applied as bifunctional catalysts/sorbent. The influence of reduction temperature (500-750 • C), Ca/Co and Ca/Y ratios (1.5-∞ and 3-18, respectively) and catalyst life time are determined in CLSMR process. The physicochemical transformation of fresh, used and regenerated samples after 16 redox cycles are determined using X-ray powder diffraction (XRD), N 2 adsorption-desorption, field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM) techniques. The effect of yttrium promoter on the structure of catalyst and regeneration step on the reversibility of bifunctional catalyst/sorbent was two important factors. The characterization results revealed that the presence of yttrium in the structure of Ca-9Co sample could improve the morphology and textural properties of catalyst/sorbents. The suitable reversibility of bifunctional catalyst/sorbents during the repeated cycles is confirmed by characterization of calcined samples. The Ca-9Co-4.5Y as optimal catalyst illustrated superior performance and stability. It showed about 95.8% methane conversion and 82.9% hydrogen yield at 700 • C and stable activity during 16 redox cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.