A mathematical model of the problem of pulse propagation in a semi-infinite gas pipeline was developed by expressing the pressure drop by the quadratic law of resistance and the local component of the gas inertia force by the law of conservation of momentum, using the law of conservation of mass in a one-dimensional statement. The model repeats the Riemann problem but takes into account the frictional resistance force. Using an auxiliary function in the form of the natural logarithm of the reduced density, and gauge functions, and certain simplifications, an equation for the reference solution of the problem in terms of gas velocity was derived and solved. For the analytical solution of the problem on gas velocity, the Riemann solution was used, and a refined analytical solution was obtained considering the quadratic law of resistance for the calculation of the perturbed and non-perturbed subdomains.
The problem of the propagation of waves of sudden change in mass flow rates originated at the ends of a pipeline of a finite length is formulated and solved analytically in the paper. In the process of modeling, it was assumed that the route change in pressure is due to the local component of the inertia force, and the velocity of propagation of waves of small pressure disturbances depends on the elastic properties of the pipeline material and fluid. The Dirichlet problem with respect to mass flow rate is solved by the Fourier method and a periodic solution is obtained in the form of a functional series. Instead of solving the Neumann problem with respect to hydrostatic pressure, a pressure solution is obtained by integrating the mass conservation equation over time, where the known solution of the problem with respect to mass flow is used. The options for using the solution for cases of low and super compressible fluids, as well as for studying the propagation of longitudinal waves in an elastic rod, are discussed. According to analytical solutions, a series of calculations was carried out for the problems of instantly closing the inlet and/or outlet sections of the functioning area, as well as for the problem of gas pumping into the elementary section of the pipeline. The features of the propagation of compression and rarefaction waves in the context of the above tasks are investigated. Some graphical results are presented and analyzed.
При моделировании процессов закачки газа в элементарный участок и истечения
газа из него в неограниченное пространство использованы квазиодномерные уравнения трубопроводного транспорта газа в приближении короткого трубопровода,
когда градиент давления газа формируется только под влиянием локальной составляющей силы инерции газа, и формула Н.Е. Жуковского о скорости истечения газа.
Уравнения сохранения импульса и массы линеаризованы введением массового расхода газа, а первое граничное условие представлено в виде линейной зависимости
от искомых функций.
Область решения разделена на прямоугольники с размерами длины участка и условного полупериода задачи, что соответствует времени пробега возмущения по
всей длине участка. Для первого условного полупериода методом характеристик
получены формулы для расчета давления, массового расхода и скорости газа. Показаны пути использования этих формул для получения решения в последующих
условных периодах.
Приведены отдельные результаты расчетов по давлению, массовому расходу и скорости потока газа при постоянных значениях функций, участвующих в краевых условиях. Выявлено, что разность между внешним давлением и давлением газа в подобластях, а также массовый расход газа по времени убывают по экспоненциальному
закону.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.