This work investigated the genetic diversity of 134 Castanea sativa Mill. accessions present in the Italian region of Emilia-Romagna. Samples were taken from three collection fields (Granaglione, Zocca and Paloneta) in the Tuscan-Emilian Apennines. The accessions were analyzed by using 16 microsatellite markers (SSR). Genetic distances among accessions, calculated through the DICE coefficient, were used to construct an UPGMA cluster analysis. One major genotype (named “Marroni”) was identified across the three investigated collection fields; this variety corresponds to a sweet chestnut cultivar that has been propagated and widely diffused in the Emilia-Romagna region. Other genotypes were represented by different varieties of Italian chestnuts. The results of this study will be used to define and share guidelines for the characterization and varietal certification of the chestnut varieties in the Emilia-Romagna region.
Apricot breeding programs could be strongly improved by the availability of molecular markers linked to the main fruit quality traits. Fruit acidity is one of the key factors in consumer acceptance, but despite its importance, the molecular bases of this trait are still poorly understood. In order to increase the genetic knowledge on the fruit acidity, an F1 apricot population (‘Lito’ × ‘BO81604311’) has been phenotyped for titratable acidity and juice pH for the three following years. In addition, the contents of the main organic acids of the juice (malate, citrate, and quinate) were also evaluated. A Gaussian distribution was observed for most of the traits in this progeny, confirming their quantitative inheritance. An available simple sequence repeat (SSR)-based molecular map, implemented with new markers in specific genomic regions, was used to perform a quantitative trait loci (QTL) analysis. The molecular map was also anchored to the recently published apricot genome sequence of ‘Stella.’ Several major QTLs linked to fruit acidity-related traits have been identified both in the ‘Lito’ (no. 21) and ‘BO81604311’ (no. 13), distributed in five linkage groups (LG 4, 5, 6, 7, and 8). Some of these QTLs show good stability between years and their linked markers were used to identify candidate genes in specific QTLs genomic regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.