Gender classification is a fundamental face analysis task. In previous studies, the focus of most researchers has been on face images acquired under controlled conditions. Real-world face images contain different illumination effects and variations in facial expressions and poses, all together make gender classification a more challenging task. In this paper, we propose an efficient gender classification technique for real-world face images (Labeled faces in the Wild). In this work, we extracted facial local features using local binary pattern (LBP) and then, we fuse these features with clothing features, which enhance the classification accuracy rate remarkably. In the following step, particle swarm optimization (PSO) and genetic algorithms (GA) are combined to select the most important features' set which more clearly represent the gender and thus, the data size dimension is reduced. Optimized features are then passed to support vector machine (SVM) and thus, classification accuracy rate of 98.3% is obtained. Experiments are performed on real-world face image database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.