Neural oscillations enable communication between brain regions. Closed-loop brain stimulation attempts to modify this activity by stimulation locked to the phase of concurrent neural oscillations. If successful, this may be a major step forward for clinical brain stimulation therapies. The challenge for effective phase-locked systems is accurately calculating the phase of a source oscillation in real time. The basic operations of filtering the source signal to a frequency band of interest and extracting its phase cannot be performed in real time without distortion. We present a method for continuously estimating phase that reduces this distortion by using an autoregressive model to predict the future of a filtered signal before passing it though the Hilbert transform. This method outperforms published approaches on real data and is available as a reusable open-source module. We also examine the challenge of compensating for the filter phase response and outline promising directions of future study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.