Abstract. The properties of atmospheric aerosol particles in Marseille and Athens were investigated. The studies were performed in Marseille, France, during July 2002 and in Athens, Greece, during June 2003. The aerosol size distribution and the formation and growth rates of newly formed particles were characterized using Differential Mobility Particle Sizers. Hygroscopic properties were observed using a Hygroscopic Tandem Differential Mobility Analyzer setup. During both campaigns, the observations were performed at suburban, almost rural sites, and the sites can be considered to show general regional background behavior depending on the wind direction. At both sites there were clear pattern for both aerosol number concentration and hygroscopic properties. Nucleation mode number concentration increased during the morning hours indicating new particle formation, which was observed during more than 30% of the days. The observed formation rate was typically more than 1 cm −3 s −1 , and the growth rate was between 1.2-9.9 nm h −1 . Based on hygroscopicity measurements in Athens, the nucleation mode size increase was due to condensation of both water insoluble and water soluble material. However, during a period of less anthropogenic influence, the growth was to a larger extent due to water insoluble components. When urban pollution was more pronounced, growth due to condensation of water soluble material dominated.
[1] The role of Secondary Biogenic Organic Aerosol in aerosol budget is examined using the Atmospheric Dispersion of Pollutants over Complex Terrain-Urban Airshed Model-Aerosols (ADREA-I/UAM-AERO) modeling system in two representative Mediterranean areas. The areas have been selected, because of their elevated biogenic emission levels and the sufficient degree of meteorological and land use diversity characterizing the locations. Comparison of the model results with and without biogenic emissions reveals the significant role biogenic emissions play in modulating ozone and aerosol concentrations. Biogenic emissions are predicted to affect the concentrations of organic aerosol constituents through the reactions of terpenes with O 3 , OH and NO 3 . The ozonolysis of terpenes is predicted to cause an increase in OH radical concentrations that ranges from 10% to 78% for Athens, and from 20% to 95% for Marseilles, depending on the location, compared to the predictions without biogenic emissions. The reactions of this extra hydroxyl radical with SO 2 and NO x have as final products increased concentrations of sulfates and nitrates in the particulate phase. As a result, biogenic emissions are predicted to affect the concentrations not only of organic aerosols, but those of inorganic aerosols as well. Thus biogenic emissions should be taken into consideration when models for the prediction and enforcement of abatement strategies of atmospheric pollution are applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.