We describe state-of-the-art experimental techniques using the beamline BM29 of the European Synchrotron Radiation Facility (ESRF). This station exploits the unique characteristics of an ESRF bending magnet source to provide a tunable, collimated, x-ray beam to perform high quality x-ray absorption spectroscopy within the energy range of E=5–75 keV using Si(111), Si(311), and Si(511) crystal pairs. Energy scans can be performed over this wide energy range with excellent reproducibility, stability and resolution, usually better than ΔE/E≃5×10−5. The experimental setup has been exploited to study condensed matter under extreme conditions. We describe here two sample environment devices; the L’ Aquila–Camerino oven for high-temperature studies up to 3000 K in high vacuum and the Paris–Edinburgh press suitable for high-pressure high-temperature studies in the range 0.1–7 GPa and temperatures up to 1500 K. These devices can be integrated in an experimental setup which combines various control and detection systems suitable to perform x-ray absorption spectroscopy, x-ray absorption temperature scans, and energy scanning x-ray diffraction (ESXD). The ESXD setup is based on a scintillator detector behind a fixed angle collimator aligned to the sample. The combination of these three measurements, which can be performed in rapid sequence on the sample during the experiment, provides an essential tool for structural investigations and in situ sample characterization.
NIMROD is the Near and InterMediate Range Order Diffractometer of the ISIS second target station. Its design is optimized for structural studies of disordered materials and liquids on a continuous length scale that extends from the atomic, upward of 30 nm, while maintaining subatomic distance resolution. This capability is achieved by matching a low and wider angle array of high efficiency neutron scintillation detectors to the broad band-pass radiation delivered by a hybrid liquid water and liquid hydrogen neutron moderator assembly. The capabilities of the instrument bridge the gap between conventional small angle neutron scattering and wide angle diffraction through the use of a common calibration procedure for the entire length scale. This allows the instrument to obtain information on nanoscale systems and processes that are quantitatively linked to the local atomic and molecular order of the materials under investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.