There are few reports on the physiological effects of metal nanoparticles (nps), especially with respect to their functions as scavengers for superoxide anion radical (O2(.-)) and hydroxyl radical (.OH). We tried to detect the scavenging activity of Pt nps using a hypoxanthine-xanthine oxidase system for O2(.-) and using a Fenton and a UV/H2O2 system for .OH. Electron spin resonance analysis revealed that 2 nm particle size Pt nps have the ability to scavenge O2(.-) and .OH. The calculated rate constant for the O2(.-)-scavenging reaction was 5.03 +/- 0.03 x 10(7) M (-1) s (-1). However, the analysis of the Fenton and UV/H 2O 2 system in the presence of Pt nps suggested that the .OH-scavenging reaction cannot be determined in both systems. Among particle sizes tested from 1 to 5 nm, 1 nm Pt nps showed the highest O2(.-)-scavenging ability. Almost no cytotoxicity was observed even after adherent cells (TIG-1, HeLa, HepG2, WI-38, and MRC-5) were exposed to Pt nps at concentrations as high as 50 mg/L. Pt nps scavenged intrinsically generated reactive oxygen species (ROS) in HeLa cells. Additionally, Pt nps significantly reduced the levels of intracellular O2(.-) generated by UVA irradiation and subsequently protected HeLa cells from ROS damage-induced cell death. These findings suggest that Pt nps may be a new type of antioxidant capable of circumventing the paradoxical effects of conventional antioxidants.
Electrolysed-reduced water (ERW) contained Platinum nanocolloids (PtNCs) of 1-10 nm, suggesting that PtNCs in ERW functioned as active hydrogen donors and scavenge intracellular reactive oxygen species (ROS). Electron paramagnetic resonance (EPR) analysis revealed that synthesized PtNCs of about 2 nm scavenged superoxide anion radicals and DPPH radicals. Synthesized PtNCs scavenged intracellular ROS and suppressed the growth of human leukemia K562 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.