In this contribution, we present a non-conventional core-shell nanoparticle, named supersphere, for implementing optical devices whose performances cannot be easily achieved with conventional nanoparticles. Superspheres are solids with intermediate shape between a sphere and a cube, whose external boundaries are described by Lamè surface equation. Thanks to its particular shape, a core-shell supersphere resonates at a lower resonant frequency with respect to a conventional core-shell spherical nanoparticle with same electrical dimensions. Such a characteristic allows relaxing the fabrication constrains, i.e. extremely thin shells, typically required for making the conventional spherical core-shell nanoparticles to operate in the lowest region of the visible spectrum. Here, after having discussed the geometry and electrical response of a core-shell supersphere, we report some preliminary results on their successful employment in the implementation of three optical devices: a trasparent screen, a biosensor and a mantle cloak
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.