Cardiac myocytes undergo a major genetic switch within the first week of postnatal development, when cell division ceases terminally and many cardiac genes are either activated or silenced. We have developed stage-specific cardiocyte cultures to analyze transcriptional control of the rat atrial natriuretic factor (ANF) gene to identify the mechanisms underlying tissue-specific and developmental regulation of this gene in the heart. The first 700 bp of ANF flanking sequences was sufficient for cardiac muscle-and stage-specific expression in both atrial and ventricular myocytes, and a cardiac muscle-specific enhancer was localized between -136 and -700 bp. Deletion of this enhancer markedly reduced promoter activity in cardiac myocytes and derepressed ANF promoter activity in nonexpressing cells. Two distinct domains of the enhancer appeared to contribute differentially to cardiac specificity depending on the differentiation stage of the myocytes. DNase I footprinting of the enhancer domain active in differentiated cells revealed four putative regulatory elements including an A+T-rich region and a CArG element. Deletion mutagenesis and promoter reconstitution assays revealed an important role for the CArG-containing element exclusively in cardiac cells, where its activity was switched on in differentiated myocytes. Transcriptional activity of the ANF-CArG box correlated with the presence of a cardiac-and stage-specific DNA-binding complex which was not recognized by the c-fos serum response element. Thus, the use of this in vitro model system representing stage-specific cardiac development unraveled the presence of different regulatory mechanisms for transcription of the ANF gene during cardiac differentiation and may be useful for studying the regulatory pathways of other genes that undergo switching during cardiac myogenesis.
Atrial cardiocytes contain granules typical of protein-secreting cells, and atrial extracts are known to contain a powerful natriuretic and diuretic activity and to possess smooth muscle relaxant activity. A variety of active atrial peptides have been isolated, including a family of related peptides showing natriuretic, diuretic and smooth muscle relaxant activities in rat and human atria; these peptides were named atrial natriuretic factor (ANF). Another unrelated peptide from pig atria, cardiodilatin, is thought to possess only smooth muscle relaxant activity. Its partial amino acid sequence shows no homology with ANF sequences. The sequence analysis of a large form (106 amino acids) of ANF and of ANF complementary DNA clones indicates that cardiodilatin and ANF peptides are synthesized from a common precursor. This precursor also contains a signal peptide sequence expected of a secretory protein. We now describe the complete structure and sequence of the human gene for this novel hormone precursor that we call pronatriodilatin.
Unlike that of skeletal muscle cells in which growth and differentiation appear mutually exclusive, growth stimulation of cardiac cells is characterized by transient expression of early response nuclear proto-oncogenes as well as induction of several cardiac-specific markers. This observation led to the speculation that these proto-oncogenes, particularly c-fos and c-jun, might act as positive regulators of cardiac transcription. We have examined the role of c-jun and c-fos in basal and growth-stimulated cardiac transcription, using the cardiac-specific atrial natriuretic factor (ANF) gene as a marker. The results indicate that c-jun and c-fos are negative regulators of ANF transcription. Inducers of jun and fos activity, such as mitogens and growth factors, inhibited endogenous ANF transcripts. In transient cotransfection assays, jun and fos were able to trans-repress the ANF promoter in both quiescent and alpha 1-adrenergic stimulated myocytes. This repression was specific to myocyte cultures and was not observed in nonmuscle cells. Deletion analysis indicated that repression does not require typical AP-1-binding sites (tetradecanoyl phorbol acetate response elements) or serum response elements but is targeted at a cardiac-specific element within the ANF promoter. Various Fos-related proteins, including Fra-1, Fos B, and v-Fos, were able to trans-repress ANF transcription. In addition, C-terminal c-fos mutants which no longer repress transcription of such early growth response genes as c-fos and EGR-1 retained the ability to repress ANF transcription. Repression by c-jun occurs via the N-terminal activation domain and does not require the DNA-binding domain, suggesting that proto-oncogene repression involves interaction with one or more limiting cardiac-specific coactivators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.