Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1-2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.
D2AM is a french CRG beamline installed at the ESRF (European Synchrotron Radiation Facility) in Grenoble, with half of the time dedicated to biological macromolecule crystallography and half to materials science studies (diffraction, wide-angle and small-angle scattering). It is constructed at the front-end BM02 of the ESRF storage ring, using the X-ray beam from a 0.8 T bending magnet. D2AM entered into routine operation at the end of 1994, and is used either for single-wavelength or for multiwavelength anomalous diffraction studies. The beam is monochromated by an Si[111] two-crystal monochromator with a resolution of about 2 x 10(-4). The first crystal is water cooled. The X-ray photon energy covers the range between 6.5 keV (lambda approximately 1.9 A) and 17 keV (lambda approximately 0.7 A), a domain of energy with many K or L absorption edges of heavy atoms of interest for biological macromolecules studies and in materials science. The X-ray beam is focused in the vertical plane by two long curved mirrors and in the horizontal plane by the second crystal of the monochromator which is given an adjustable sagittal curvature. A spot size of 0.3 x 0.1 mm (FWHM) is measured at the sample position. Both mirrors are cut out of a 6"-diameter 1.1 m-long Si single crystal, polished and coated with a 400 A Pt thin film. The rugosity is better than 4 A r.m.s. and the longitudinal slope error is better than 5 x 10(-6) rad r.m.s. The first mirror is water cooled, the second is not. The beam intensity on the sample is about 10(11) photon s(-1) on a 0.3 x 0.3 mm focus area at 100 mA in the storage ring of the ESRF. The harmonic rejection ratio obtained with the two mirrors is better than 10(-5) for lambda/3. The combined optical system, mirror/monochromating-crystals/mirror, used on D2AM constitutes altogether a high-intensity point-focusing fixed-exit monochromator, which has the additional property that the energy resolution is not dependent on the beam divergence in use. Its stability and resolution are perfectly adapted to multiwavelength anomalous diffraction studies. The alignment of the mirrors and the monochromator is fully automated, taking 5 min, with the exception of the adjustment of the sagittal focusing. During multiwavelength diffraction experiments the wavelength is changed by a fast single monochromator rotation. Neither realignment of the mirrors nor readjustment of the beam focusing are necessary. The stability and reproducibility of the selected X-ray photon energy is better than 0.5 eV.
Diffraction Anomalous Fine Structure (DAFS) spectroscopy uses resonant elastic x-rays scattering as an atomic, shell and site selective probe that gives information on the electronic structure and the local atomic environment as well as on the long range ordered crystallographic structure. A DAFS experiment consists of measuring the Bragg peak intensities as a function of the energy of the incoming x-ray beam. The French CRG (Collaborative Research Group) beamline BM2-D2AM (Diffraction Diffusion Anomale Multi-longueurs d'onde) at the ESRF (European Synchrotron Radiation Facility) has developed a state of the art energy scan diffraction set-up. In this article, we present the requirements for obtaining reliable DAFS data and report recent technical achievements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.