In Hybridlaminaten werden die positiven Eigenschaften metallischer und faserverstärkter polymerer Komponenten miteinander kombiniert. Vorteile der thermoplastischen Kunststoffkomponente, wie z. B. Umformbarkeit und Recyclingfähigkeit sowie Großserientauglichkeit, bieten einen herausragenden Vorteil gegenüber duroplastischen Matrices. Zur Herstellung der Hybridlaminate werden in einem ersten Schritt Endlosfasern und Thermoplastfolien zu unidirektional faserverstärkten Tapes vorkonsolidiert. Anschließend werden diese belastungsgerecht mit der metallischen Komponente verpresst, wobei das Interface zwischen faserverstärktem Thermoplast und der metallischen Folie eine entscheidende Rolle spielt.Im vorliegenden Beitrag werden Hybridlaminate mit kohlenstofffaserverstärktem Polyamid (CF-PA6) als Kernschichten und glasfaserverstärktem Polyamid (GF-PA6) als Zwischenschicht zur metallischen Komponente untersucht. Bei den Laminaten kommt ein 2/1-sowie 3/2-Aufbau mit zwei bzw. drei Metalllagen sowie einer bzw. zwei Lagen faserverstärkten Kunststoffes zum Einsatz. Als metallische Folie werden die Aluminiumlegierung EN AW-6082 und die Titanlegierung Ti3Al2,5V (Grade 9) verwendet. Die Laminatherstellung, die Entwicklung und die Einstellung des Interfaces sowie die Evaluierung der mechanischen Eigenschaften werden im Beitrag diskutiert.Schlüsselwörter: hybride Laminate / faserverstärkte Thermoplaste / Interface Engineering / mechanische Eigenschaften / CAPAAL ® Hybrid laminates combine the positive properties of the metal and fibre reinforced plastic (FRP) components. Advantages of the FRP, like formability, recyclability as well as suitability for mass production, provide an outstanding advantage over thermosetting matrices. For the production of the hybrid laminates, at first continuous fibers and thermoplastic films are pre-consolidated to fibre-reinforced unidirectional tapes. Subsequently, these are pressed together with the metal component in a loadcapable optimized arrangement. Thereby the interface between the FRP and the metal foils is of crucial importance. This paper focuses on hybrid laminates with carbon-fiber reinforced polyamide (CF-PA6) functioning as core layers and glass-fiber reinforced polyamide (GF-PA6) as intermediate layers between the centre and metal component. Laminates in 2/1 and 3/2 structure with two respectively three metal layers and one respectively two FRP layers are examined. For the metal foil, the aluminium alloy EN AW-6082 and
Hybrid laminates combine the positive properties of metals and fibre reinforced plastics. Thereby, the relatively free selectable components provide further benefits. Especially thermoplastic matrices offer positive aspects like the possibility of deformation, recyclability as well as the possibility of mass production. To obtain such hybrid laminates the first step is the production of pre-consolidated unidirectional endless fibre reinforced thermoplastic foils. In a second step, these pre-impregnated fibre-foil tapes were alternating thermally pressed with metallic layers in tailored compositions. To use the full capacity of the hybrid laminates an adequate interface between the fibre reinforced thermoplastics and the metallic foil is essential. Different investigations of the authors display the principle possibility to produce hybrid laminates with carbon endless fibre reinforced thermoplastics and aluminium alloy foils. Nevertheless, load free delamination’s occurs. The reason for these delaminations within the interface of the fibre reinforced thermoplastics and the metallic foil are the differences in the thermal expansion coefficient of the components. Caused by the consolidation at elevated temperatures these differences become more significant and reduce the reproducibility of the hybrid laminates. To minimize these thermal induced stresses the graduation of the thermal expansion coefficient is one possibility. This graduation is possible by utilising glass fibre thermoplastic tapes between the aluminium alloy foil and the carbon fibre reinforced thermoplastics. Further investigations are dealing with so called expansion alloys to adapt the thermal expansion coefficient. The latter approach provides the benefit to utilize the full mechanical properties of the carbon fibre reinforced thermoplastics and to economize the glass-fibre tapes. Nevertheless, these expansion alloys are characterized by a high density. Hence, within this contribution the specific mechanical properties as well as the advantages and disadvantages of hybrid laminates with expansion alloys or aluminium alloys with glass-fibre thermoplastics interlayers are discussed and assessed. These specific mechanical properties display the potential of the expansion alloy in spite of the high density by means of comparable values. The sample only consisting of carbon fibre reinforced plastics highlights the great variety and possibilities of different hybrid laminate structures and combinations regarding the thickness and positioning of the component layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.