Despite being spoken by a large percentage of the world, Indic languages in general lack user-friendly and efficient methods for text input. These languages have poor or no support for typing. Soft keyboards, because of their ease of installation and lack of reliance on specific hardware, are a promising solution as an input device for many languages. Developing an acceptable soft keyboard requires the frequency analysis of characters in order to design a layout that minimizes text-input time. This article proposes the use of various development techniques, layout variations, and evaluation methods for the creation of soft keyboards for Brahmic scripts. We propose that using optimization techniques such as genetic algorithms and multi-objective Pareto optimization to develop multi-layer keyboards will increase the speed at which text can be entered.
A pattern reconfigurable dielectric resonator antenna emitting at 3.1 GHz is presented in this study. The beam can be steered at 6 degrees, 8 degrees, 14 degrees, and 171 degrees. Three P-i-N diodes are employed in the slots of the ground plane to help steer the beam direction. By changing the state of the three diodes, five states can be obtained. The TE01δ mode is excited using a differential feed technique. Differential feed helps in increasing the gain and reducing the size of the structure. The return loss of each state is less than −25 dB. The gain of the first state is 7.65 dBi, the second and fifth state’s gain is 8.22 dBi, third and fourth state’s gain is 10.6 dBi. This Antenna is designed using Rogers RO4003C material which has low Electrical gravity, low voltage, and high oxidation resistance that makes it appropriate for RF applications. The properties required for RF microwave circuits, matching networks, and controlled impedance transmission lines are present in the RO4003C material. Annealed copper is used for designing the ground plane and feedline which provides excellent conductivity. The antenna is fabricated using the chemical etching process which employs a positive photoresist that gives a higher resolution accuracy for the designed antenna. This process of fabrication has another advantage of inculcating structures from simpler to complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.