Insect-specific baculoviruses are increasingly used as biological control agents of lepidopteran pests in agriculture and forestry, and they have been previously regarded as robust to resistance development by the insects. However, in more than a dozen cases of field resistance of the codling moth Cydia pomonella to commercially applied C. pomonella granulovirus (CpGV) in German orchards, resistance ratios exceed 1000. The rapid emergence of resistance is facilitated by sex-linkage and concentration-dependent dominance of the major resistance gene and genetic uniformity of the virus. When the gene is fixed, resistance levels approach 100,000-fold. Our findings highlight the need for development of resistance management strategies for baculoviruses.
An up to 10,000-fold resistance against the biocontrol agent Cydia pomonella granulovirus (CpGV) was observed in field populations of codling moth, C. pomonella, in Europe. Following different experimental approaches, a modified peritrophic membrane, a modified midgut receptor, or a change of the innate immune response could be excluded as possible resistance mechanisms. When CpGV replication was traced by quantitative PCR in different tissues of susceptible and resistant insects after oral and intra-hemocoelic infection, no virus replication could be detected in any of the tissues of resistant insects, suggesting a systemic block prior to viral DNA replication. This conclusion was corroborated by fluorescence microscopy using a modified CpGV (bacCpGV(hsp-eGFP)) carrying enhanced green fluorescent gene (eGFP), which showed that infection in resistant insects did not spread. In conclusion, the different lines of evidence indicate that CpGV can enter but not replicate in the cells of resistant codling moth larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.