Nanoparticles (NPs) with nonmetallic cores and metallic shells (such as Au, Ag, and Cu) can exhibit improve absorption efï¬ciency due to localized surface plasmon resonance (LSPR), charge density oscillations at the surfaces of these core-shell composite nanoparticles. In this study, the effect of the geometry of TiO2@Ag core-shell composite nanoparticles on their optical absorption properties was theoretically illustrated in the wavelength ranges between the visible and infrared light regions of electromagnetic radiation. These nanostructures were modeled by varying the TiO2 core and Ag shell radii of the composite nanospheres and nanowires. The results indicate that varying the TiO2 core radius and Ag shell thickness can be used to tune the absorption efï¬ciency of these materials from the UV region to the visible or infrared regions of the electromagnetic spectrum. An increase in the absorption efï¬ciency with greater core radii was observed. The absorption efficiency peaks of core-shell nanospheres or nanowires increased with the shell radius. Theoretical modeling based on these results suggest that this nanomaterial can be effectively utilized so that its optical absorption properties can be tuned. These properties could help to synthesize TiO2@Ag core-shell composite NPs for use in environmental applications such as treating contaminated water and in novel future devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.