In this paper, we report on the synthesis and characterization of cobalt aggregates electrochemically incorporated on composite polypyrrole films. XAS (X-ray absorption spectroscopy) was used to probe the atomic local order in these composites and to furnish new insights into the metal/polymer interaction. A complete understanding of the incorporation process and its evolution was achieved by in situ XAS measurements at different stages of the electrochemical process. These results indicate that the reaction starts with the Co 2+ entrapped in the polymeric matrix as a complex [-[(C 4 H 2 N) 3 CH 3 (CH 2 ) 11 OSO 3 -] 6 Co 2+ ]. The reduction of this complex leads to the synthesis of Co aggregates in the film. Measurements at the O and N K edges evidence that the main interaction between Co aggregates and the polymer is verified via Co-N bonds, the N originating from the polypyrrole (PPy) amine group. The pH effect on the metal/polymer interaction is discussed. Scanning electron microscopy (SEM) measurements show the formation of dendritic-like cobalt aggregates on the film surface. The magnetic response obtained by in situ alternating gradient field magnetometry (AGFM) allows prediction of the possibility of obtaining a magnetic polymer with superparamagnetic particles with sizes below 10 nm. Our results are the first steps toward the development of an advanced material with exciting potential for future recording media application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.