Silica gel has been reported to induce apatite nucleation on its surface in vitro and it can act as a stimulant that induces formation of chemical apatite (Ca-P) layers on the surfaces of bioactive glass-ceramics. In this study, apatite formation in response to and the bone-bonding behavior of silica gels implanted in the tibiae of mature rabbits were studied. Implants were made from three silica gels treated at 400, 800, and 1000 degrees C, and the effects of such heat treatment on the above parameters were investigated. The silica gel was made by hydrolysis and polycondensation of tetraethoxysilane in aqueous solution containing polyethylene glycol. Rectangular implants (15 mm x 10 mm x 2 mm) of each heat-treated silica gel were implanted into both tibial bones of mature male rabbits, which were killed 4 or 8 weeks after implantation, and the tibiae containing the implants were dissected out. The bone-implant interfaces were investigated using Giemsa surface staining, contact microradiography, scanning electron microscopy-electron probe microanalysis, and X-ray diffraction. Histologically, no bonding of bone to any of the silica gels was observed at any time postimplantation. Soft tissue was observed at the bone-silica gel interface, but there were no giant foreign body or inflammatory cells. A Ca-P-rich layer was observed only on small areas of the surfaces of the silica gels treated at 400 and 800 degrees C 4 and 8 weeks after implantation. X-ray diffraction analysis confirmed the presence of hydroxyapatite in these Ca-P-rich layers.(ABSTRACT TRUNCATED AT 250 WORDS)
Articles you may be interested inInductively coupled plasma deep etching of InP/InGaAsP in Cl2/CH4/H2 based chemistries with the electrode at 20°C J. Vac. Sci. Technol. B 30, 051208 (2012); 10.1116/1.4748807 Effect of high-frequency variation on the etch characteristics of ArF photoresist and silicon nitride layers in dual frequency superimposed capacitively coupled plasmaa) In situ real-time monitoring of profile evolution during plasma etching of mesoporous low-dielectric-constant SiO 2 J. Vac. Sci. Technol. A 23, 347 (2005); 10.1116/1.1865154Sub-100 nm radius of curvature wide-band gap III-nitride vacuum microelectronic field emitter structures created by inductively coupled plasma etching
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.