In adult rats with a unilateral 6-hydroxydopamine-induced destruction of the nigrostriatal dopamine (DA) pathway, grafts of embryonic substantia nigra can establish a new dopaminergic terminal fiber plexus in the previously denervated neostriatum and compensate for some of the behavioral deficits induced by the nigrostriatal lesion. In the present study the synaptic connections of the ingrowing DA fibers from the graft were analyzed ultrastructurally, using immunocytochemical localization of tyrosine hydroxylase (TH), in animals whose lesion-induced motor asymmetry had been completely compensated for by the nigral grafts. In two of the animals, horseradish peroxidase-wheatgerm agglutinin conjugate was injected into the graft in order to trace possible reciprocal afferent connections to the graft from the host striatum. TH-immunoreactive axons from the graft were seen to make abundant symmetric synapses with neuronal elements in the host neostriatum. Between 85 and 90% of these synapses were on dendritic shafts and spines, and the rest were on neuronal perikarya. Two principal targets were identified: dendrites of spiny neurons, the majority of which are likely to be striatal projection neurons; and the cell bodies of giant neurons, most (or perhaps all) of which are known to be cholinergic interneurons. The synapses made on dendritic spines, which constituted about 40% of all TH-positive synapses formed by the TH-positive neurons in the graft, resembled those seen in normal animals, both in that they made contacts with spine necks and in that they invariably were associated with an asymmetric TH-negative synapse contacting the spine head. The innervation of the giant cell perikarya, which constituted about 6% of all TH-positive synapses found, was strikingly abnormal in that the graft-derived TH-positive fibers formed dense pericellular "baskets" selectively around the giant cell bodies. Such arrangements were never seen in the normal striatum, nor did they occur in the intact contralateral striatum in the grafted animals. It is proposed that this apparent dopaminergic hyperinnervation from the graft could provide a powerful inhibition of the cholinergic interneurons in the reinnervated host striatum, and that such an inhibitory mechanism could assist in the graft-induced functional recovery by potentiating the functional effects of DA synapses terminating on the spiny efferent neurons. This dual innervation may thus help to explain why restoration of only a small proportion of the striatal DA innervation by the graft is sufficient to induce complete compensation of, e.g., motor asymmetry in the lesioned rats.(ABSTRACT TRUNCATED AT 400 WORDS)
Fetal striatal grafts display a striking modularity of composition. With acetylcholinesterase (AChE) histochemistry, the tissue of such grafts can be divided into regions with strong AChE staining of the neuropil and regions in which AChE staining of the neuropil is weak. In the experiments reported here, we reexamined the nature of this modularity. Striatal grafts were made by injecting dissociated cells of E15 ganglionic eminence into the striatum of adult rats, which 7 days before had recived intrastriatal deposits of ibotenic acid. Some donors had been exposed to 3H-thymidine at E11-E15. After 9-17 month survivals, the anatomical organization of the grafts was studied by histochemistry, immunohistochemistry, and autoradiography. In every graft, the AChE-rich regions formed patches (P regions) in a larger AChE-poor surround (NP regions). Neurons labeled with 3H-thymidine appeared in both P and NP regions, suggesting that donor cells were distributed in each type of region and that neither type of tissue, P or NP, was composed exclusively of host tissue. In the AChE-rich P regions, markers characteristic of normal perinatal and mature rat striatum were expressed by medium-sized cells: calcium-binding protein (calbindin D28k) immunostaining, metenkephalin (mENK) immunostaining, and, more rarely, somatostatin (SOM) immunostaining. In the NP regions, however, medium-sized cells expressing calbindin and mENK immunostaining were very rare, and there was an abundance of neuronal types not found in normal mature striatal tissue. These included (1) large, multipolar, calbindin-positive neurons with well-ramified, densely stained dendrites, (2) large, SOM-positive neurons with prominent dendritic trees, and (3) mENK-positive cells smaller than typical striatal, medium-sized, mENK-immunoreactive neurons. In Nissl stains, the AChE-rich P regions resembled the normal striatum of mature animals, whereas the AChE-poor NP regions did not. These findings suggest that the P regions of fetal striatal grafts achieve a phenotypy similar to that of normal striatum at maturity and during much of postnatal development. The dominant expression of perikaryal calbindin-like immunoreactivity in the P regions further suggests that these zones have a high proportion of tissue resembling striatal matrix. By contrast, expression of marker antigens in the NP zones of the grafts suggests that these zones are predominantly composed of nonstriatal tissue or that they have the phenotypy of immature striatum intermixed with some nonstriatal cells.(ABSTRACT TRUNCATED AT 400 WORDS)
Dissociated cell suspensions, prepared from the substantia nigra and septal regions of rat embryos, can be grafted to the depths of the caudate-putamen and hippocampus of aged rats. The grafts were rich in dopamine-containing and acetylcholinesterase-positive neurons and had produced extensive new dopaminergic and cholinergic terminal networks in the host neostriatum and hippocampus, respectively. The intrastriatal dopaminergic grafts were associated with a significant improvement in motor coordination in the aged rats. This result suggests that the intracerebral grafting technique may provide a new tool for exploring the role of dopaminergic and cholinergic deficits in the neurological and behavioral impairments associated with aging.
To investigate the extent to which the social desirability of test items can bias Eysenck Personality Inventory (EPI) score profiles, a group of subjects was asked to rate the items of the EPI in terms of their social desirability. Three further groups were asked to complete the inventory honestly, or in such a way as to give a good or bad impression of themselves. Test items measuring extraversion were rated as socially undesirable, whereas those measuring neuroticism were rated as undesirable. Compared with subjects asked to respond honestly, subjects attempting to give a good impression tended to endorse items rated as socially desirable and hence to respond in the direction of stable extraversion. Similarly, subjects asked to give a bad impression tended to give socially undesirable responses and hence tended to appear as neurotic introverts. The lie scale did not effectively discriminate faking subjects from honest subjects. It is concluded that a social desirability response set can consistently bias subjects’ scores on the EPI and this is not detected by the lie scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.