The recent multi-year 2015–2019 drought after a multi-decadal drying trend over Central America raises the question of whether anthropogenic climate change (ACC) played a role in exacerbating these events. While the occurrence of the 2015–2019 drought in Central America has been asserted to be associated with ACC, we lack an assessment of natural vs anthropogenic contributions. Here, we use five different large ensembles—including high-resolution ensembles (i.e., 0.5∘ horizontally)—to estimate the contribution of ACC to the probability of occurrence of the 2015–2019 event and the recent multi-decadal trend. The comparison of ensembles forced with natural and natural plus anthropogenic forcing suggests that the recent 40-year trend is likely associated with internal climate variability. However, the 2015–2019 rainfall deficit has been made more likely by ACC. The synthesis of the results from model ensembles supports the notion of a significant increase, by a factor of four, over the last century for the 2015–2019 meteorological drought to occur because of ACC. All the model results further suggest that, under intermediate and high emission scenarios, the likelihood of similar drought events will continue to increase substantially over the next decades.
A subseasonal-to-seasonal (S2S) prediction system was recently developed using the GFDL SPEAR global coupled model. Based on 20-year hindcast results (2000-2019), the boreal wintertime (November-April) Madden-Julian Oscillation (MJO) prediction skill is revealed to reach 30 days measured before the anomaly correlation coefficient of the real-time multivariate (RMM) index drops to 0.5. However, when the MJO is partitioned into four distinct propagation patterns, the prediction range extends to 38, 31, and 31 days for the fast-propagating, slow-propagating, and jumping MJO patterns, respectively, but falls to 23 days for the standing MJO. A further improvement of MJO prediction requires attention to the standing MJO given its large gap with its potential predictability (15 days). The slow-propagating MJO detours southward when traversing the maritime continent (MC), and confronts the MC prediction barrier in the model, while the fast-propagating MJO moves across the central MC without this prediction barrier. The MJO diversity is modulated by stratospheric quasi-biennial oscillation (QBO): the standing (slow-propagating) MJO coincides with significant westerly (easterly) phases of QBO, partially explaining the contrasting MJO prediction skill between these two QBO phases.The SPEAR model shows its capability, beyond the propagation, in predicting their initiation for different types of MJO along with discrete precursory convection anomalies. The SPEAR model skillfully predicts the observed distinct teleconnections over the North Pacific and North America related to the standing, jumping, and fast-propagating MJO, but not the slow-propagating MJO. These findings highlight the complexities and challenges of incorporating MJO prediction into the operational prediction of meteorological variables.
The Kuroshio Extension (KE), an eastward-flowing jet located in the Pacific western boundary current system, exhibits prominent seasonal-to-decadal variability, which is crucial for understanding climate variations in northern midlatitudes. We explore the representation and prediction skill for the KE in the GFDL SPEAR (Seamless System for Prediction and EArth System Research) coupled model. Two different approaches are used to generate coupled reanalyses and forecasts: (1) restoring the coupled model’s SST and atmospheric variables toward existing reanalyses, or (2) assimilating SST and subsurface observations into the coupled model without atmospheric assimilation. Both systems use an ocean model with 1° resolution and capture the largest sea surface height (SSH) variability over the KE region. Assimilating subsurface observations appears to be critical to reproduce the narrow front and related oceanic variability of the KE jet in the coupled reanalysis. We demonstrate skillful retrospective predictions of KE SSH variability in monthly (up to 1 year) and annual-mean (up to 5 years) KE forecasts in the seasonal and decadal prediction systems, respectively. The prediction skill varies seasonally, peaking for forecasts initialized in January and verifying in September due to the winter intensification of North Pacific atmospheric forcing. We show that strong large-scale atmospheric anomalies generate deterministic oceanic forcing (i.e., Rossby waves), leading to skillful long-lead KE forecasts. These atmospheric anomalies also drive Ekman convergence/divergence that forms ocean memory, by sequestering thermal anomalies deep into the winter mixed layer that re-emerge in the subsequent autumn. The SPEAR forecasts capture the recent negative-to-positive transition of the KE phase in 2017, projecting a continued positive phase through 2022.
This study shows that the frequency of North American summertime (June-August) heat extremes is skillfully predicted several months in advance in the newly-developed GFDL (Geophysical Fluid Dynamics Laboratory) SPEAR (Seamless system for Prediction and EArth system Research) seasonal forecast system. Using a statistical optimization method, the Average Predictability Time, we identify three large-scale components of the frequency of North American summer heat extremes that are predictable with significant correlation skill. One component, which is related to a secular warming trend, shows a continent-wide increase in the frequency of summer heat extremes and is highly predictable at least 9 months in advance. This trend component is likely a response to external radiative forcing. The second component is largely driven by the sea surface temperatures in the North Pacific and North Atlantic and is significantly correlated with the central U.S. soil moisture. The second component shows largest loadings over the central U.S. and is significantly predictable 9 months in advance. The third component, which is related to the central Pacific El Niño, displays a dipole structure over North America and is predictable up to 4 months. Potential implications for advancing seasonal predictions of North American summertime heat extremes are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.