Many popular video games sustain compelling storylines that narrativize scarce resources, promote competitive and collaborative social interaction, and foreground survival goals — all necessary skills for making sense of a changed and changing global environment. In this article, we analyze representative commercial video games in four categories: civilization simulations, post–apocalypse first–person shooters, multiplayer survivor horror games, and historical recreations. We examine the ways their game mechanics and game scenarios represent social, economic and environmental interdependencies. We contrast these representations with future scenarios of gradually increasing scarcity of resources, climate change, and other human–environment interactions which can be influenced by transitioning to sustainable practices. Because good game mechanics can cultivate imaginative visions of situational potentials and solutions to problems, a key objective of the paper is to suggest game mechanics and scenarios that simulate and model sustainable practices. This agenda includes shifting away from growth as a game goal; strategizing with depletable resources; emphasizing scavenging versus combat for resource acquisition; and, developing more complex avenues for social interaction and collaboration among players. Incorporating more sustainability science concepts into commercial video games can offer a public outlet for exploring the complex interdependencies of a changing world.
‘d’Anjou’ pears (Pyrus communis L.) harvested at optimum maturity, 6.4 kg flesh firmness, were stored in 0.5, 1.0, 1.5, 2.0, 2.5 and 5.0% O2 with CO2 concentration were maintained at 0.01 to 0.03%. Other samples were stored in commercially recommended concentrations of 2-2.5% O2 and 0.8-1.0% CO2 (i.e., regular CA), and conventional air storage. Temperatures of −1.1°C (30°F) were maintained in all cabinets throughout the 8 month storage. Oxygen concentration below 1.5% maintained the dessert quality of fruit and reduced the incidence of superficial storage scald after 8 months of storage. Fruit stored at 1.0% O2 for 8 months did not develop scald even after returning to air storage for 30 days. Oxygen concentration above 2% without CO2 had no beneficial effect on dessert quality or scald control. Regular CA storage also maintained dessert quality, but had only slight effect on scald control. Fruit stored below 2% O2 softened slower, lost titratable acids and free amino acids more slowly, and accumulated protein more slowly than samples stored at higher O2 levels for 8 months. Regular CA fruit changed similarly to those from the 1.0% and 1.5% O2 treatments. Overall fruit metabolism in 0.5% O2 was markedly retarded during the 5 to 8 month storage period.
‘Bing’ sweet cherries (Prunus avium L.) harvested at commercial maturity were commercially packed and stored in 6 low-02 and 1 high-C02 controlled atmospheres (CA) at −1.1°C for 35 days and in a second study were stored in either 1.5% 02 and 0.8% C02 or 12% 02 and 10% C02 at 5.6°, 3.3°, or 1.1°C for 23 days. Fruit stored at 0.5–2.0% 02 with 0.03% C02 maintained a higher percentage of very green stems, brighter fruit color, and higher levels of titratable acids than those stored in air at −1.1°C for 35 days. High C02 atmospheres conserved fruit brightness and TA level but did not prevent stem discoloration. The only effect of lowering temperature from 5.6° to 1.1° was a slight increase in fruit firmness after storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.