The injection of fluids into the Earth-be it for CO 2 sequestration, enhanced geothermal systems, or oil and gas operations-is known to induce earthquakes (Ellsworth, 2013;Keranen et al., 2013;Raleigh et al., 1976). Minimizing induced seismicity requires an understanding of what causes a fault to begin to slip, the mechanisms driving the transition from aseismic to seismic slip (i.e., initiation of dynamic rupture), and how large the resulting seismic event will grow (i.e., how far dynamic rupture is sustained). These factors help inform the maximum event magnitude and potential for runaway ruptures. This study explores how background stress levels affect the initiation and termination of fluid-induced ruptures using a 3 m rock experiment.Fluid injection field experiments on the decameter scale highlight the important role of induced aseismic slip in the initiation of induced seismicity. Results from show that fluid injection primarily induced aseismic slip. They observed microseismicity as a by-product of aseismic slip rather than directly
Earthquakes occur in clusters or sequences that arise from complex triggering mechanisms, but direct measurement of the slow subsurface slip responsible for delayed triggering is rarely possible. We investigate the origins of complexity and its relationship to heterogeneity using an experimental fault with two dominant seismic asperities. The fault is composed of quartz powder, a material common to natural faults, sandwiched between 760 mm long polymer blocks that deform the way 10 meters of rock would behave. We observe periodic repeating earthquakes that transition into aperiodic and complex sequences of fast and slow events. Neighboring earthquakes communicate via migrating slow slip, which resembles creep fronts observed in numerical simulations and on tectonic faults. Utilizing both local stress measurements and numerical simulations, we observe that the speed and strength of creep fronts are highly sensitive to fault stress levels left behind by previous earthquakes, and may serve as on-fault stress meters.
<p>Natural earthquakes occur in clusters or sequences that arise from complex triggering mechanisms, but direct measurement of the mechanisms responsible for complex temporal sequences and delayed triggering is rarely possible. A central question involved whether delayed triggering is due to slow slip and stress transfer or local weakening/fatigue processes such as stress corrosion. We investigate the origins of this complexity and its relationship to fault heterogeneity using a biaxial loading apparatus with an experimental fault that has two dominant seismic asperities. The fault is composed of a 5 mm layer of quartz powder, a velocity weakening material common to natural faults, sandwiched between 760 mm long polymer blocks that deform similar to the way 10 meters of rock would behave. Due to the higher local normal stress and the free surface boundary condition on the sample ends, the sample behaves like two asperities, one at each end, that can fail independently. As the quartz powder was continuously sheared, the friction properties changed, and we observed a transition from steady sliding to periodic repeating earthquakes that transitioned into aperiodic and complex sequences of fast and slow events. There is also reason to believe that friction properties evolved differently on the higher normal stress asperities and made them more unstable than the center part of the laboratory sample. Sequential ruptures on the two different asperities were linked via migrating slow slip which resembles creep fronts observed in numerical simulations and on tectonic faults. The propagation velocity of the creep fronts ranged from 0.1 to 10 m/s, which is broadly consistent with the velocity of slow slip fronts inferred from migrating tectonic tremor sources. Utilizing both local stress measurements and numerical simulations, we observe that the speed and strength of creep fronts are highly sensitive to fault stress levels left behind by previous earthquakes and may serve as on-fault stress meters.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.