As vehicles become more intelligent, in-vehicle networking (IVN) systems such as controller area network (CAN) are essential for the convenience and safety of drivers. To expand the applicability of IVN systems, attention is currently being focused on chassis networking systems that require increased network capacity and real-time capabilities. FlexRay was developed to replace CAN protocol in chassis networking systems, to remedy the shortage of transmission capacity and unsatisfactory real-time transmission delay of conventional CAN. However, FlexRay network systems require a complex scheduling method, which is a barrier to their implementation as chassis networking systems. In particular, if we want to migrate from a CAN network to a FlexRay network using the well-defined CAN message database, which has been specifically constructed for chassis networking systems by automotive vendors, a new type of scheduling method is necessary to reduce scheduling efforts during the software development process. This paper presents a node-based scheduling method for easy migration from a CAN network to a FlexRay network system. To demonstrate the feasibility of the technique, its performance is evaluated in terms of various software complexity indices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.