Estrogen induces a rapid increase in microvascular permeability in the rodent uterus, leading to stromal edema and a marked increase in uterine wet weight. This edema is believed to create an environment optimal for the growth and remodeling of the endometrium in preparation for implantation and pregnancy. Increased endometrial microvascular permeability also occurs in conjunction with implantation. Estrogen-induced uterine edema is immediately preceded by an increase in the expression of vascular endothelial growth factor (VEGF), a potent stimulator of microvascular permeability. The objective of this study was to determine to what degree immunoneutralization of VEGF would interfere with a) estradiol-induced uterine edema and b) pregnancy. In the first set of experiments, immature female rats were injected with either VEGF antiserum or normal rabbit serum (NRS) prior to 17beta-estradiol treatment. Rats treated with estradiol alone showed a 57% increase in uterine wet weight at 6 h compared with controls. Injection of 200 or 300 micro l of VEGF antiserum reduced the response to only 20% and 10% above controls, respectively. In the second set of experiments, young adult female mice were treated with 100 micro l of either VEGF antiserum or NRS at 1200 h on the fourth day after mating. NRS-treated mice had normal pregnancies. VEGF antiserum, however, completely blocked pregnancy. When VEGF antiserum-treated females were examined on Day 5 for the presence of implantation sites, none were found. These results show that a) VEGF is the major mediator of estrogen-induced increase in uterine vascular permeability and b) VEGF-induced edema is absolutely essential for implantation to take place.
These findings indicate that an accelerometer and pedometer are two instruments that reliably estimate the physical activity levels of patients with PAOD over 2 consecutive days. Furthermore, the activity questionnaires, suggesting that activity monitoring measures a different component of activities in patients with PAOD with intermittent claudication.
The estrogen receptor-alpha (ERalpha) acts through multiple pathways, including estrogen response element (ERE)-dependent (classical) and ERE-independent (nonclassical) mechanisms. We previously created a mouse model harboring a two-amino-acid mutation of the DNA-binding domain (E207A, G208A) that precludes direct binding of ERalpha to an ERE. After crossing heterozygous mutant mice with an ERalpha knockout (ERKO) line, it was possible to assess the degree of physiological rescue by the isolated ERalpha nonclassical allele (-/AA; AA) when compared with ERKO mice (-/-) and to wild type (+/+; WT). In male ERKO mice up to 8 months of age, testosterone levels were high, although LH levels were similar to WT. Testosterone was normal in the AA mice, indicating that the AA allele rescues the enhanced testosterone biosynthesis in ERKO mice. Male ERKO mice exhibited distention of the seminiferous tubules as early as 2-3 months of age as a consequence of decreased water resorption in the efferent ducts. By 3-4 months of age, ERKO mice had impaired spermatogenesis in approximately 40% of their tubules, and sperm counts and motility declined in association with the histological changes. In the AA mice, histological defects were greatly reduced or absent, and sperm counts and motility were rescued. Levels of aquaporins 1 and 9, which contribute to water uptake in the efferent ducts, were reduced in ERKO mice and partially or fully rescued in AA mice, whereas another water transporter, sodium-hydrogen exchanger-3, was decreased in both ERKO and AA mice. We conclude that non-ERE-dependent estrogen pathways are sufficient to rescue the defective spermatogenesis observed in ERKO mice and play a prominent role in ERalpha action in the testis, including pathways that regulate water resorption and androgen biosynthesis.
Relaxin's ability to stimulate uterine growth is well established. The mechanisms by which relaxin exerts this effect, however, remain unclear. In light of previous work demonstrating peptide growth factor activation of estrogen receptors (ERs), the present study was conducted to determine if relaxin similarly stimulates ERs. Twenty-five day-old female Sprague-Dawley rats were bilaterally ovariectomized and treated with estradiol or porcine relaxin alone or in combination with the ER antagonist ICI 182,780. Following treatment with 17beta-estradiol or relaxin alone, the uterine weight/body weight ratio (UtW/BW) increased significantly over control values (+98% and +77% respectively, p<0.0003). Pre-treatment of animals with ICI 182,780 (3 microg/g BW) prior to either estradiol or relaxin treatment completely inhibited the hormone-induced increases in uterine weight (p<0.0005). ICI 182,780 alone had no significant effect. Histological analysis of uterine cross-sections revealed that the edema present in the endometrium of animals treated with estradiol or relaxin alone was completely absent in the uteri of animals pre-treated with ICI 182,780. These data indicate that relaxin-induced uterine edema and growth is mediated by ERs.
Estrogen regulates the growth and differentiation of the uterus via binding to estrogen receptors (ERs), members of the nuclear receptor family of transcription factors. Two forms of ER exist: ERalpha and ERbeta. The former is a well-characterized mediator of estrogen-induced transcription, but the function of the latter is unclear. Recent in vitro studies suggest that both splicing forms of ERbeta expressed in rat tissues, beta1 and beta2, may function as inhibitors of ERalpha transcriptional activity. To gain insight into the role of ERbeta in estrogen action, we examined the effects of estrogen and relaxin, a ligand-independent activator of ERs, on the expression of ERbeta1 and ERbeta2 mRNA in the uterus in vivo. Eighteen-day-old female rats were ovariectomized and, after recovery, treated with 17beta-estradiol, relaxin, or vehicle. Quantitative reverse transcription-polymerase chain reaction analyses of uterine RNA from estrogen-treated animals revealed marked decreases in the steady-state levels of the mRNAs for both ERbeta1 and ERbeta2 at 3, 6, and 24 h after treatment. Relaxin induced a similar effect. Neither hormone had any significant effect on ERalpha mRNA levels. To determine if endogenous estrogen exerts this effect, we examined the expression of ERbetas in the uterus during the estrous cycle. Levels of both isoforms were highest at diestrus (low estrogen), were significantly lower at early proestrus (rising estrogen), reached a nadir during late proestrus (peak estrogen), and rebounded at estrus (declining estrogen). These data suggest that down-regulation of ERbeta expression may be required for estrogen to exert its full trophic effects on the uterus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.