The capacity of ad hoc wireless networks can be substantially increased by equipping each network node with multiple radio interfaces that can operate on multiple non-overlapping channels. However, new scheduling, channelassignment, and routing algorithms are required to fully utilize the increased bandwidth in multi-channel multi-radio ad hoc networks. In this paper, we develop a fully distributed algorithm that jointly solves the channel-assignment, scheduling and routing problem. Our algorithm is an online algorithm, i.e., it does not require prior information on the offered load to the network, and can adapt automatically to the changes in the network topology and offered load. We show that our algorithm is provably efficient. That is, even compared with the optimal centralized and offline algorithm, our proposed distributed algorithm can achieve a provable fraction of the maximum system capacity. Further, the achievable fraction that we can guarantee is larger than that of some other comparable algorithms in the literature.
We propose two new distributed scheduling policies for ad hoc wireless networks that can achieve provable capacity regions. Known scheduling policies that guarantee comparable capacity regions are either centralized or need computation time that increases with the size of the network. In contrast, the unique feature of the proposed distributed scheduling policies is that they are constant-time policies, i.e., the time needed for computing a schedule is independent of the network size. Hence, they can be easily deployed in large networks.
Abstract-We propose two new distributed scheduling policies for ad hoc wireless networks that can achieve provable capacity regions. Known scheduling policies that guarantee comparable capacity regions are either centralized or need computation time that increases with the size of the network. In contrast, the unique feature of the proposed distributed scheduling policies is that they are constant-time policies, i.e., the time needed for computing a schedule is independent of the network size. Hence, they can be easily deployed in large networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.