<p><strong>Abstract.</strong> The microwave remote sensing is highly useful, as it provides synoptic observation of the Earth’s surface or planetary bodies, regardless of day or night and the atmospheric conditions, propagation through ionosphere with minimum loss. One of the best microwave technology for imaging system is the Synthetic Aperture Radar (SAR) remote sensing. The microwave SAR currently represents the best approach for obtaining spatially distributed geophysical parameter present on the Earth’s surface or planetary bodies. In the present work, geophysical parameters <i>viz.</i>, Soil Moisture, Surface Roughness, Dielectric Constant (&epsilon;) and Backscattering Coefficients (&sigma;<sup>0</sup>) will be retrieved. The modelling makes the process of estimating information beyond the real observation range for data interpretation. In the present paper most widely used modelling techniques for the microwave SAR dataset is an Integral Equation Model (IEM) which is implemented for above said geophysical parameters retrieval. The aim of the present work is to estimate accurate, reliable and skillful measurements of geophysical parameters from the microwave SAR dataset. In the present study microwave C band SAR dataset is used. The overall processing was done by using PolSARPro Ver. 5.0 software. In the present work, geophysical parameters are measured with the help IEM modelling, the statistical parameter and occurrence plane, estimated from the microwave SAR image, which was very helpful for retrieving geophysical parameters. From the overall paper work, it was concluded that the IEM modelling is a one of the realistic modelling methods for retrieving geophysical parameters for microwave C band SAR dataset.</p>
The present embedded system has been design and developed in order to measure, display and control polyhouse related environmental factors such as humidity, soil moisture and temperature by using 89E516RD microcontroller. In order to maintain favorable condition for plant growth in polyhouse the humidity sensor, soil moisture sensor and temperature sensor along with microcontroller are deployed. The micro-controller based embedded system sense and display information on 16x2 LCD display and also provides automated ON-OFF control action for exhaust fan, heater and fogger. The result in the graphical format shows the response of embedded system under discussion. This system is cost effective, easy handling and has compact hardware.
<p><strong>Abstract.</strong> The imaging spectroscopy offers an opportunity to map and discriminate different minerals on the lunar surface which further helps to understand the origin, evolution process, and the crustal composition on the surface of the moon. Compositional mapping of the lunar surface is considered as a standard approach for mineral mapping. This paper reports surface mineralogy of the lunar surface from Mare Vaporum using Chandrayaan-1 Hyperspectral remotely sensed data from HySi sensor. False color composite is created using different band shaping algorithms like band strength; band curve and band tilt parameters at crucial wavelength for spatial analysis. The Spectral analysis has been done by deriving reflectance spectra at varying locations from the area under study. The Study shows the mineral map with different categories of minerals which are high-Ca pyroxene and/or olivine and low Ca-pyroxene. However because of the limited spectral coverage of HySi, data at the longer wavelengths required to discriminate among different group of minerals.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.