In Huang-Huai-Hai plain of China, farmers collect the maize straw for livestock during maize harvest to increase their revenue. To maintain the sustainable productivity of the soil, all straw after the wheat harvest is returned to the field. This straw brings difficulties in the no-till seeding for maize after wheat harvest, and thus it is necessary to develop efficient no-till seeders that can cope with heavy residue and improve sowing quality. In this work, we designed a wide-strip-till no-till pneumatic maize (WNPM) seeder to satisfy the need in this plain. The key parameters of the opposite-placed anti-blocking mechanism of the WNPM seeder were determined via the discrete element method (DEM) technology, while the parameters of the pneumatic maize seed meter were specified using the coupled simulation of computational fluid dynamics (CFD) and DEM. We also carried out field experiment to test the performance of our machine. Under the operating speed of 8 km/h, the soil disturbance was 38.2%. Moreover, the straw cleaning rate achieved 94.4% in the seeding belt while the residue cover index of the seed plot was over 58%, and the seeding performance was improved significantly. The qualified seed spacing index, uniformity variation coefficient, qualified index of sowing depth and variation coefficient of sowing depth were 96.6%, 19.1%, 95.1% and 3.2%, respectively. In general, the WNPM seeder improves the working efficiency of maize sowing because both the reliable working speed and the sowing quality were increased. These results are of considerable importance for crop production in Huang-Huai-Hai plain of China.
The sweet potato transplanters of diverse transplanting configurations have been shown to produce various planting properties in relation to different raised bed cropping systems, thus affecting crop growth and yield in sweet potato cultivation. In Shandong Province, a field experiment assessed the effects of three treatments (RB1, mulched raised beds with a finger-clip type transplanter; RB2, bare raised beds with a finger-clip type transplanter; and RB3, bare raised beds with a clamping-plate type transplanter) on soil temperature, plant growth, yield, and economic benefits. With the lowest coefficient variation of plant spacing and planting depth, the RB1 with the finger-clip type transplanter had 6.4% and 6.0% higher temperature at 5–10 cm soil layer by using the plastic-mulch for rapid early slips growth as compared with the RB2 and the RB3, respectively. Consequently, the leaf area index in the RB1 was increased by 5.6% and 6.4% as compared to the RB2 and the RB3, separately. This finally contributed to 57.5–70.8% greater fresh vines weight and 23.8–33.8% higher tubers yield in the RB1 compared with both the RB2 and the RB3 treatments, respectively. In general, in the mulched raised bed system of the Huang-Huai-Hai region of China, the finger-clip type transplanter could be a suitable option for the transplanting of sweet potato slips. In the bare raised bed system, meanwhile, the clamping-plate type transplanter has the potential to increase the production of sweet potatoes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.