The percolation aspect of random sequential adsorption of extended objects on a triangular lattice is studied by means of Monte Carlo simulations. The depositing objects are formed by self-avoiding lattice steps on the lattice. Jamming coverage θ{jam}, percolation threshold θ{p}, and their ratio θ{p}/θ{jam} are determined for objects of various shapes and sizes. We find that the percolation threshold θ{p} may decrease or increase with the object size, depending on the local geometry of the objects. We demonstrate that for various objects of the same length, the threshold θ{p} of more compact shapes exceeds the θ{p} of elongated ones. In addition, we study polydisperse mixtures in which the size of line segments making up the mixture gradually increases with the number of components. It is found that the percolation threshold decreases, while the jamming coverage increases, with the number of components in the mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.