A general analytical solution of the Grad–Shafranov equation is presented. Specific functional forms of pressure and plasma current are used; the solution allows arbitrary plasma size, aspect ratio, elongation, triangularity, current, and poloidal beta, without imposing undue constraints amongst those variables.
Externally applied magnetic fields are used on the Texas Experimental Tokamak (TEXT) to study the possibility of controlling the particle, impurity and heat fluxes at the plasma edge. Fields with toroidal mode number n = 2 or 3 and multiple poloidal mode numbers m (dominantly m = 7) are used, with a poloidally and toroidally averaged ratio of radial to toroidal field components 〈|br/Bø〉 ≅0. 1%. Calculations show that it is possible to produce mixed islands and stochastic regions at the plasma edge (r/a ≥ 0.8) without affecting the interior. The expected magnetic field structure is described and experimental evidence of the existence of this structure is presented. The edge electron temperature decreases with increasing 〈|br/Bø〉, while interior values are not significantly affected. The implied increase in edge electron thermal diffusivity is compared with theoretical expectations and is shown to agree with applicable theories to within a factor of three.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.