Background: 31-Phosphorus magnetic resonance spectroscopy (31-P MRS) has excellent potential for clinical neurological practice because of its noninvasive in-vivo assessment of cellular energy metabolism and the indirect evaluation of the phospholipid composition of the cell membrane, intracellular pH, and intracellular Mg2+ concentration. Purpose: The aim of this study was to evaluate the metabolic characteristics of glioma and metastases using 31-P MRS and assess utility to differentiate both. Study Type: Prospective study. Population: Fifteen consecutive patients with brain tumor. Field Strength/Sequence: Three-tesla magnetic resonance imaging/three-dimensional MRS imaging sequence. Statistical Tests: Unpaired sample t-test, and one-way analysis of variance with Tukey's post-hoc test. Results: Significantly decreased values of phosphomonoesters/inorganic phosphate (PME/Pi) in the tumor group (1.22 ± 0.72) compared with controls (2.28 ± 1.44) with a p-value of 0.041 were observed. There is a significant decrease in phosphocreatine (PCr)/Pi values (energy demand) in the tumor group (2.76 ± 0.73) compared with controls (4.13 ± 1.75) with a p-value of 0.050. Significant increase in Pi/adenosine triphosphate (ATP) was noted in tumor group (0.28 ± 0.09) compared with controls (0.22 ± 0.08) with p-value 0.049. Among tumor group, PME/PCr values were significantly decreased in gliomas (0.35 ± 0.17) than metastasis (0.58 ± 0.23) compared with controls with a p-value of 0.047. A significant decrease in PME/ATP was noted in gliomas (0.25 ± 0.12) than metastasis (0.41 ± 0.14) compared with controls with a p-value of 0.034. The tumor group exhibits alkaline pH (7.12 ± 0.10) compared with the normal parenchyma (7.04 ± 0.06) with a significant p-value of 0.025. Glioma and metastasis could not be differentiated with pH. However, the perilesional edema of glioma shows alkaline pH (7.09 ± 0.06) and metastasis shows acidic pH (7.02 ± 0.05) with a significant p-value of 0.030. Conclusion: Our study provides new insight into the cellular constituents and pH of gliomas and metastases and results were significant in differentiation between these two. However, due to the additional high expense, it is available as a research tool in very few institutions in India.
Aims: Newer cardiac magnetic resonance techniques like native T1 mapping are being used increasingly as an adjunct to diagnose myocardial diseases with fibrosis. However, its full clinical utility has not been tested extensively, especially in the Indian population. The purpose of this study was to find native T1 values in healthy individuals without cardiac disease in our 3-Tesla MRI system and examine whether native myocardial T1 values can be used to differentiate between normal and diffuse myocardial disease groups. Subjects and Methods: After approval from the institutional ethics committee, native T1 mapping was performed in 12 healthy individuals without cardiac disease who served as controls and in 26 patients with diffuse myocardial diseases (acute myocarditis ( n = 5), hypertrophic cardiomyopathy (HCM) ( n = 8), nonischemic dilated cardiomyopathy (DCM) ( n = 7), restrictive cardiomyopathy (RCM) due to amyloidosis ( n = 6)) in a 3-Tesla MRI system in short axis slices and four-chamber view using a modified Look-Locker inversion recovery sequence. The mean native T1 values and standard deviations were calculated for control and disease groups and compared. The ability of native myocardial T1 mapping to differentiate between normal and diffuse myocardial disease groups was assessed. One-way ANOVA with Tukey's Post-Hoc test was used to find significant difference in the multivariate analysis and Chi-Square test was used to find the significance in categorical data. Results: The native T1 values for the healthy group in our 3-Tesla MRI system was 1186.47 ± 45.67 ms. The mean T1 values of the groups acute myocarditis (1418.68 ± 8.62 ms), HCM (1355.86 ± 44.67 ms), nonischemic DCM (1341.31 ± 41.48 ms), and RCM due to amyloidosis (1370.37 ± 90.14 ms) were significantly higher ( P = 0.0005) than that of the healthy control group. Conclusion: Native myocardial T1 mapping is a promising tool for differentiating between healthy and diffuse myocardial disease groups.
Disseminated extramedullary plasmacytoma (EMP) is an unusual entity that has nonspecific imaging features at MRI. Nevertheless, knowledge of its imaging features and unusual locations might help radiologists to suspect it in the appropriate clinical scenario. Some noncontiguous EMPs might mimic lymphoma and MRI would be useful as a problem-solving tool in EMP and would help in treatment planning. We report an unusual cardiac mass in cardiac MRI, a detailed work-up of which led to the diagnosis of multifocal EMP involving the heart, ribs, pancreas, retroperitoneum, and soft tissues of the thigh, rarely reported in the literature.
This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.