With its robust ability to integrate and learn from large sets of clinical data, artificial intelligence (AI) can now play a role in diagnosis,聽clinical decision making, and personalized medicine. It is probably the natural progression of traditional statistical techniques. Currently, there are many unmet needs in nephrology and, more particularly, in the kidney transplantation (KT) field. The complexity and increase in the amount of data, and the multitude of nephrology registries worldwide have enabled the explosive use of AI within the field. Nephrologists in many countries are already at the center of experiments and advances in this cutting-edge technology and our aim is to generalize the use of AI among nephrologists worldwide. In this paper, we provide an overview of AI from a medical perspective. We cover the core concepts of AI relevant to the practicing nephrologist in a consistent and simple way to help them get started, and we discuss the technical challenges. Finally, we focus on the KT field: the unmet needs and the potential role that AI can play to fill these gaps, then we summarize the published KT-related studies, including predictive factors used in each study, which will allow researchers to quickly focus on the most relevant issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.