A new method for the preparation of active layers of polymeric solar cells without the need for thermal post‐treatment to obtain optimal performance is presented. Poly(3‐hexylthiophene) (P3HT) nanofibers are obtained in highly concentrated solutions, which enables the fabrication of nanostructured films on various substrates. Here, the preparation of these fibers along with their characterization in solution and in the solid state is detailed. By mixing these nanofibers with a molecular acceptor such as [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) in solution, it is possible to obtain in a simple process a highly efficient active layer for organic solar cells with a demonstrated power conversion efficiency (PCE) of up to 3.6 %. The compatibility of the room‐temperature process developed herein with commonly used plastic substrates may lead to applications such as the development of large‐area flexible solar cells.
This Full Paper focuses on the preparation of single‐walled or multi‐walled carbon nanotube solutions with regioregular poly(3‐hexylthiophene) (P3HT) and a fullerene derivative 1‐(3‐methoxycarbonyl) propyl‐1‐phenyl[6,6]C61 (PCBM) using a high dissolution and concentration method to exactly control the ratio of carbon nanotubes (CNTs) to the P3HT/PCBM mixture and disperse the CNTs homogeneously throughout the matrix. The CNT/P3HT/PCBM composites are deposed using a spin‐coating technique and characterized by absorption and fluorescence spectroscopy and by atomic force microscopy to underline the structure and the charge transfer between the CNTs and P3HT. The performance of photovoltaic devices obtained using these composites as a photoactive layer mainly show an increase of the short circuit current and a slight decrease of the open circuit voltage which generally leads to an improvement of the solar cell performances to an optimum CNT percentage. The best results are obtained with a P3HT/PCBM (1 : 1) mixture with 0.1 wt % multi‐walled carbon nanotubes with an open circuit voltage (Voc) of 0.57 V, a current density at the short‐circuit (Isc) of 9.3 mA cm–2 and a fill factor of 38.4 %, which leads to a power conversion efficiency of 2.0 % (irradiance of 100 mW cm–2 spectroscopically distributed following AM1.5).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.