Dysphagia is a common symptom that is important to recognise and appropriately manage, given that causes include life threatening oesophageal neoplasia, oropharyngeal dysfunction, the risk of aspiration, as well as chronic disabling gastroesophageal reflux (GORD). The predominant causes of dysphagia varies between cohorts depending on the interplay between genetic predisposition and environmental risk factors, and is changing with time. Currently in white Caucasian societies adopting a western lifestyle, obesity is common and thus associated gastroesophageal reflux disease is increasingly diagnosed. Similarly, food allergies are increasing in the west, and eosinophilic oesophagitis is increasingly found as a cause. Other regions where cigarette smoking is still prevalent, or where access to medical care and antisecretory agents such as proton pump inhibitors are less available, benign oesophageal peptic strictures, Barrett’s oesophagus, adeno- as well as squamous cell carcinoma are endemic. The evaluation should consider the severity of symptoms, as well as the pre-test probability of a given condition. In young white Caucasian males who are atopic or describe heartburn, eosinophilic esophagitis and gastroesophageal reflux disease will predominate and a proton pump inhibitor could be commenced prior to further investigation. Upper gastrointestinal endoscopy remains a valid first line investigation for patients with suspected oesophageal dysphagia. Barium swallow is particularly useful for oropharyngeal dysphagia, and oesophageal manometry mandatory to diagnose motility disorders.
Purpose: The preferred radiotherapy treatment for medulloblastoma is craniospinal irradiation (CSI). With the aim of developing the potential to reduce normal tissue dose and associated post-treatment complications with photon and proton radiotherapy techniques for CSI. This report aims to carefully compare and rank treatment planning and dosimetric outcomes for pediatric medulloblastoma patients using normal tissue complication probability (NTCP) formalism between photon (three-dimensional conformal radiotherapy, intensity-modulated radiotherapy [IMRT], volumetric-modulated arc therapy [VMAT], and HT) and proton CSI. Methods and Materials: The treatment data of eight pediatric patients who typically received CSI treatment were used in this study. The patients were 7 years of age on average, with ages ranging from 3 to 11 years. A prescription dose of 3600 cGy was delivered in 20 fractions by the established planning methods. The Niemierko's and Lyman–Kutcher–Burman models were followed to carefully estimate NTCP and compare different treatment plans. Results: The NTCP of VMAT plans in upper and middle thoracic volumes was relatively high compared to helical tomotherapy (HT) and pencil beam scanning (PBS) (all P < 0.05). PBS rather than IMRT and VMAT in the middle thoracic region ( P < 0.06) could significantly reduce the NTCP of the heart. PBS significantly reduced NTCP of the lungs and liver (all P < 0.05). Conclusion: The NTCP and tumor control probability (TCP) model-based plan ranking along with dosimetric indices will help the clinical practitioner or medical physicists to choose the best treatment plan for each patient based on their anatomical or clinical challenges.
Objective: The present investigation intends to identify the optimal radiotherapy treatment plan for synchronous bilateral breast cancer (SBBC) using dosimetric and radiobiological indexes for three techniques, namely, helical tomotherapy (HT), volumetric modulated arc therapy (VMAT), and intensity-modulated radiotherapy (IMRT). Methods: Twenty SBBC treated female patients treatment planning data (average age of 52.5 years) were used as the sample for the present study. Three different plans were created using 50 Gy in a 25 fraction dose regime. Poisson, Niemierko, and LKB models were applied for calculating normal tissue complication probability (NTCP) and tumour control probability (TCP). Result: The target average dose comparison between IMRT with HT and VMAT with HT was highly substantial (P=0.001). The percentage of TCP for IMRT, VMAT, and HT in the Poisson model were 93.70±0. 28, 94.68±0.30, and 94.34±0.57, respectively (p<0.05). The dose maximum was lower for the whole lung in the HT plan, with an average dose of 49.31Gy±3.9 (p<0.009). The NTCP values of both Niemierko and LKB models were lower for the heart, lungs, and liver for the IMRT plan. Conclusion: The sparing of organs at risk was higher in the HT plan dosimetrically, and the TCP was higher in the three techniques. The comparison between the three techniques shows that the IMRT and HT techniques could be considered for treating SBBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.