The structural, optical and magnetic properties of the Zn 1-x Mn x O (0 < x < 0.05) thin films synthesized by sol-gel technique have been analyzed in the light of modification of the electronic structure and disorder developed in the samples due to Mn doping. The films are of single phase in nature and no formation of any secondary phase has been detected from structural analysis.Absence of magnetic impurity phase in these films confirmed from morphological study also.Increasing tendency of lattice parameters and unit cell volume has been observed with increasing Mn doping concentration. The incorporation of Mn 2+ ions introduces disorder in the system. That also leads to slight degradation in crystalline quality of the films with increasing doping. The grain size reduces with increase in Mn doping proportion. The band gaps shows red shift with doping and the width of localized states shows an increasing tendency with doping concentration. It is due to the formation of impurity band and trapping of Mn atoms, which leads to the generation of the defect states within the forbidden band. Photoluminescence (PL) spectra shows gradual decrease of intensity of exitonic and defect related peaks with increasing Mn doping. Defect mediated intrinsic ferromagnetism has been observed even at room temperature for 5at% Mn doped ZnO film. The strong presence of antiferromagnetic (AFM) interaction reduces the observed ferromagnetic moments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.