Plasma etching processes at the 22 nm technology node and below will have to satisfy multiple stringent scaling requirements of microelectronics fabrication. To satisfy these requirements simultaneously, significant improvements in controlling key plasma parameters are essential. Pulsed plasmas exhibit considerable potential to meet the majority of the scaling challenges, while leveraging the broad expertise developed over the years in conventional continuous wave plasma processing. Comprehending the underlying physics and etching mechanisms in pulsed plasma operation is, however, a complex undertaking; hence the full potential of this strategy has not yet been realized. In this review paper, we first address the general potential of pulsed plasmas for plasma etching processes followed by the dynamics of pulsed plasmas in conventional high-density plasma reactors. The authors reviewed more than 30 years of academic research on pulsed plasmas for microelectronics processing, primarily for silicon and conductor etch applications, highlighting the potential benefits to date and challenges in extending the technology for mass-production. Schemes such as source pulsing, bias pulsing, synchronous pulsing, and others in conventional high-density plasma reactors used in the semiconductor industry have demonstrated greater flexibility in controlling critical plasma parameters such as ion and radical densities, ion energies, and electron temperature. Specifically, plasma pulsing allows for independent control of ion flux and neutral radicals flux to the wafer, which is key to eliminating several feature profile distortions at the nanometer scale. However, such flexibility might also introduce some difficulty in developing new etching processes based on pulsed plasmas. Therefore, the main characteristics of continuous wave plasmas and different pulsing schemes are compared to provide guidelines for implementing different schemes in advanced plasma etching processes based on results from a particularly challenging etch process in an industrial reactor.
In this work, experimental measurements of the electronic band gap of low-k organosilicate dielectrics will be presented and discussed. The measurement of bandgap energies of organosilicates will be made by examining the onset of inelastic energy loss in core-level atomic spectra using X-ray photoelectron spectroscopy. This energy serves as a reference point from which many other facets of the material can be understood, such as the location and presence of defect states in the bulk or at the interface. A comparison with other measurement techniques reported in the literature is presented. V C 2014 AIP Publishing LLC.
Pulsed rf plasmas show promise to overcome challenges for plasma etching at future technological nodes. In pulsed plasmas, it is important to characterize the transient phenomena to optimize plasma processing of materials. In particular, it is important to evaluate the effect of the ion energy and angular distribution (IEAD) functions during pulsing on etching of nanoscale features. In this work, the impact of simultaneous pulsing of both source and bias in an inductively coupled plasma on plasma characteristics and feature profile evolution is discussed using results from a two-dimensional reactor scale plasma model coupled to a Monte Carlo based feature profile model. Results are discussed for an Ar∕Cl2 gas mixture which is typically used for poly-Si etching. The consequences of duty cycle, pulse shape, and the phase lag between source and bias power pulses on discharge characteristics, IEADs to the wafer, and feature profile evolution are discussed. The low plasma density during the initial period of the pulse was found to introduce a high energy tail component to the IEADs. This high energy tail component can be affected by modifying the pulse shape. The Si etching rate is found to increase with increasing duty cycle but is lower compared to continuous mode of operation due to lower time averaged power deposition. Pulsing the source and bias out of phase provides for increased ion energies and fluxes to the wafer for a given duty cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.