The comparative interaction of equimolar amounts of 1,2-dichloroethane and 1,2-dibromoethane with rat and mouse nucleic acids was studied in both in vivo (liver, lung, kidney and stomach) and in vitro (liver microsomal and/or cytosolic fractions) systems. In vivo, liver and kidney DNA showed the highest labeling, whereas the binding to lung DNA was barely detectable. Dibromoethane was more highly reactive than dichloroethane in both species. With dichloroethane, mouse DNA labeling was higher than rat DNA labeling whatever the organ considered: the opposite was seen for the bioactivation of dibromoethane. RNA and protein labelings were higher than DNA labeling, with no particular pattern in terms of organ or species involvement. In vitro, in addition to a low chemical reactivity towards nucleic acids shown by haloethanes per se, both compounds were bioactivated by either liver microsomes and cytosolic fractions to reactive forms capable of binding to DNA and polynucleotides. UV irradiation did not photoactivate dibromoethane and dichloroethane. The in vitro interaction with DNA mediated by enzymatic fractions was PB-inducible (one order of magnitude, using rat microsomes). In vitro bioactivation of haloethanes was mainly performed by microsomes in the case of dichloroethane and by cytosolic fractions in the case of dibromoethane. When microsomes plus cytosol were used, rat enzymes were more efficient than mouse enzymes in inducing a dibromoethane-DNA interaction: the opposite situation occurred for dichloroethane-DNA interaction, and this is in agreement with the in vivo pattern. In the presence of both metabolic pathways, addition or synergism occurred. Dibromoethane was always more reactive than dichloroethane. An indication of the presence of a microsomal GSH transferase was achieved for the activation of dibromoethane. No preferential binding in vitro to a specific polynucleotide was found. Polynucleotide labeling was higher than (or equal to) DNA binding. The labeling of microsomal RNA and proteins and of cytosolic proteins was many times lower than that of DNA or polynucleotides. The in vivo and in vitro data reported above give an unequivocal indication of the relative reactivity of the haloethanes examined with liver macromolecules from the two species and agree, on the whole, with the relative genotoxicity (DNA repair induction ability, mutagenicity and carcinogenicity) of the chemicals.
The dose-response relationship of the benzene covalent interaction with biological macromolecules from rat organs was studied. The administered dose range was 3.6 x 107 starting from the highest dosage employed, 486 mg/kg, which is oncogenic for rodents, and included low and very low dosages. The present study was initially performed with tritium-labeled benzene, administered by IP injection. In order to exclude the possibility that part of the detected radioactivity was due to tritium incorporated into DNA from metabolic processes, "4C-benzene was then also used following a similar experimental design. By HPLC analysis, a single adduct from benzene-treated DNA was detected; adduct identification will be attempted in the near future. Linear dose-response relationship was observed within most of the range of explored doses. Linearity was particularly evident within low and very low dosages. Saturation of benzene metabolism did occur at the highest dosages for most of the assayed macromolecules and organs, especially in rat liver. This finding could be considered as indicative of the dose-response relationship of tumor induction and could be used in risk assessment.
of the CRL rosette test Human T cells make fragile rosettes when incubated in the cold with sheep erythrocytes [4]. We were unable t o detect CR.L in human thymus lymphotyte preparations (89-98 % of these cells made spontaneous rosettes), so it is unlikely that spontaneous rosettes contributed t o our results. Under the conditions of the CRL test, adenoid lymphocytes did not make rosettes with EA alone. DiscussionIt is likely that the complement rosette inhibition we observed was due t o saturation of lymphocyte receptors by complement products generated in the preincubation mixtures. Since serum activated by endotoxin, which is thought t o bypass C 1, 4 and 2, was inhibitory, it is likely that some product of C3 or subsequent C components was responsible.
The dose-response relationship of the benzene covalent interaction with biological macromolecules from rat organs was studied. The administered dose range was 3.6 x 10(7) starting from the highest dosage employed, 486 mg/kg, which is oncogenic for rodents, and included low and very low dosages. The present study was initially performed with tritium-labeled benzene, administered by IP injection. In order to exclude the possibility that part of the detected radioactivity was due to tritium incorporated into DNA from metabolic processes, 14C-benzene was then also used following a similar experimental design. By HPLC analysis, a single adduct from benzene-treated DNA was detected; adduct identification will be attempted in the near future. Linear dose-response relationship was observed within most of the range of explored doses. Linearity was particularly evident within low and very low dosages. Saturation of benzene metabolism did occur at the highest dosages for most of the assayed macromolecules and organs, especially in rat liver. This finding could be considered as indicative of the dose-response relationship of tumor induction and could be used in risk assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.