The effect of temperature on the development of Megaselia halterata (Wood) (Diptera: Phoridae) on A15 variety of button mushroom in the stages of casing and spawn-running was investigated at eight constant temperatures (10, 12.5, 15, 18, 20, 22.5, 25, and 27°C) and developmental rates were modeled as a function of temperature. At 25 and 27°C, an average of 22.2 ± 0.14 and 20.0 ± 0.10 days was needed for M. halterata to complete its development from oviposition to adult eclosion in the stages of casing and spawn-running, respectively. The developmental times of males or females at various constant temperatures were significantly different. Among the linear models, the Ikemoto and Takai linear model in the absence of 12.5 and 25°C showed the best statistical goodness-of-fit and based on this model, the lower developmental threshold and the thermal constant were estimated as 10.4°C and 526.3 degree-days, respectively. Twelve nonlinear temperature-dependent models were examined to find the best model to describe the relationship between temperature and development rate of M. halterata. The Logan 10 nonlinear model provided the best estimation for T and T and is strongly recommended for the description of temperature-dependent development of M. halterata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.