Sarcoplasmic reticulum (SR) calcium handling in diaphragm was compared between mdx mice (7-8 weeks old) and age-matched controls. The total SR Ca2+ load was released from the SR by rapidly cooling muscle bundles from 22 to -1 degree C. The plateau amplitude of the rapid cooling contracture (RCC) was considered as an index of the SR Ca2+ content. The steady-state RCC amplitude was significantly lower by 50% in mdx bundles mainly because of a decreased capacity of the dystrophic diaphragm to generate maximal tension. There was no significant difference between either RCC time to peak or the time to half-relaxation of the transient, spike-like, contractile response induced by muscle rewarming. The recovery process of RCC was studied by using a paired RCC protocol. In both groups, at the shortest interval (10 s) between two RCCs, the amplitude of the second RCC was decreased by 25% compared with the first RCC. Increasing the time interval led to progressive monoexponential recovery of the second RCC with similar time constants in control and mdx diaphragm. These results indicate that the dystrophic process does not significantly alter SR Ca2+ uptake nor Ca2+ redistribution within the muscular cell.
Smooth muscles hyperresponsiveness is a common feature in anaphylaxis and allergic diseases. The aim of the present work was to investigate whether the enhanced reactivity of sensitized guinea-pig vas deferens was associated with changes in the resting membrane potential (Er) of the smooth muscle cells. Active sensitization was performed by subcutaneous injection of egg albumen. Er was measured in vitro in isolated vas deferens with conventional KCl-filled microelectrodes. Quantification of [3H]ouabain binding sites, measurements of 86Rb efflux, and measurements of Na and K contents were also performed. In normal physiological solution, at 35 degrees C, Er was a mean of -54.1+/-0.3 mV (mean +/- SEM) in control vas deferens. Sensitization resulted in depolarizing Er by about 7 mV. In control and sensitized preparations, the 3H-ouabain binding site concentration, the efflux of 86Rb, and the K content were similar. In guinea-pig vas deferens, active sensitization induced a partial depolarization of the resting membrane potential of the smooth muscle cells, which did not result from a downregulation of Na+ -K+ pump sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.